APPENDIX A CROWN SPONSORSHIP

OFFICIAL

Government of South Australia

Department for Energy and Mining

Deputy Chief Executive

Level 4 11 Waymouth Street Adelaide SA 5000 GPO Box 320 Adelaide SA 5001 Tel 08 8463 3000

ABN 83 768 683 934 dem.oce@sa.gov.au www.energymining.sa.gov.au

Mr Kevin Andersen Manager, Power Development AGL Energy Ltd Level 24, 200 George St Sydney NSW 2000

kandersen@agl.com.au

Dear Mr Anderson,

BARKER INLET POWER STATION STAGE 2 – CROWN SPONSORSHIP UPDATE

I refer to your correspondence of 26 September 2024 to the Chief Executive of the Department for Energy and Mining (DEM) regarding your request for an updated crown sponsorship support for the Barker Inlet Power Station (BIPS) Stage 2.

DEM notes the successful operation of Stage 1 of BIPS is providing generation capacity of 210MW to the South Australian energy market, following the granting of crown sponsorship under the former *Development Act 1993* for both BIPS 1 and BIPS 2 in September 2017.

DEM notes the Development Application (DA) was originally due to expire on 29 January 2025, however, on 15 August 2024 the Minister of Planning authorised an extension to the lapsing date to 29 January 2028 in accordance with the *Planning, Development and Infrastructure Act 2016* (PDI Act).

As it is understood, AGL Energy is seeking to apply for a variation to the DA under section 128 of the PDI Act to make a number of changes to the approved BIPS 2 project including to:

- enable the project to use either gas turbines or reciprocating engines (instead of reciprocating engines only as currently approved); and
- increase the proposed output of BIPS 2 to up to 280MW (instead of the currently approved 210MW).

DEM is supportive of AGL Energy's request for a variation to the DA of its Stage 2 BIPS and confirms this letter provides the updated crown sponsorship support for BIPS Stage 2. BIPS 2 is expected to play an ongoing important role in firming the existing renewable generation capacity on the South Australian network.

DEM notes that AGL Energy currently proposes that construction of BIPS 2 would commence in 2026 and the project would be operational by 2028.

I am advised that on 13 September 2024 the Office of Technical Regulator granted approval, with conditions to the proposed generator (as per the variation) and provided a certificate issuing compliance with the requirements of the Technical Regulator in relation to the security and stability of the State's power system.

OFFICIAL

Our Ref: DEMC24/F2024/001544

OFFICIAL

DEM make no representations or gives no warranties in relation to the outcome of the development application extension or time that it takes to secure a planning outcome for the project.

It is AGL Energy's responsibility to obtain all other statutory approvals, licences and permits from relevant authorities, manage community expectations and to fund the project. The South Australian Government makes no commitment to purchase any product or service related to the project.

Yours sincerely

Benjamin Zammit ACTING DEPUTY CHIEF EXECUTIVE

1 November 2024

APPENDIX B DEVELOPMENT APPROVAL – EXTENSION OF TIME

15 August 2024

OFFICIAL

Government of South Australia

Department for Housing and Urban Development

Level 10, 83 Pirie Street Adelaide SA 5000

> GPO Box 1815 Adelaide SA 5001

Telephone: 08 7133 2376 ABN 92 366 288 135

www.dhud.sa.gov.au

AGL Energy Ltd Level 24, 200 George Street SYDNEY NSW 2000

Attention: Kevin Anderson Email: <u>kandersen@agl.com.au</u>

Dear Mr Anderson

DA 010/V067/17 - Barker Inlet Power Station – Extension of time to complete

I refer to your correspondence dated 28 June 2024, in which you requested an extension of time to complete the development, originally approved by the delegate of the Minister for Planning on 29 January 2018. A period of seven years was allowed to complete both stages, with BIPS1 having been constructed and operating, but BIPS2 is still to be commenced.

AGL has requested an additional three years to complete the development.

Having carefully considered the matter, noting the work done to date in commencing the development (and the investment already made, both with BIPS1 and the new 250MW Torrens Island Battery development commissioned in 2023), I can advise that an additional 3-year extension of time has been approved to allow final completion.

Pursuant to r.108(3)(b) of the *Planning, Development and Infrastructure (General) Regulations* 2017, and as the delegate of the Minister for Planning, I have now determined that the revised operative date to fully complete the development is 29 January 2028.

If substantial commitment and progress has not been made by the revised expiration date, a further extension may not be granted, due to the time that will have elapsed since approval was first granted (which will then be ten years).

Should you have any enquiries in relation to this matter, please do not hesitate to contact Simon Neldner of this office on (08) 7133 2376 or email simon.neldner@sa.gov.au

Yours sincerely

Jeen

Robert Kleeman MANAGER, CROWN AND IMPACT ASSESSMENT as delegate of the MINISTER FOR PLANNING

OFFICIAL

APPENDIX C CERTIFICATES OF TITLE

Date/Time **Customer Reference** Order ID

Register Search Plus (CT 6242/10) 23/02/2024 10:25AM

20240223002121

The Registrar-General certifies that this Title Register Search displays the records maintained in the Register Book and other notations at the time of searching.

Certificate of Title - Volume 6242 Folio 10

Parent Title(s) CT 6224/108

Creating Dealing(s) RTC 13332732

Title Issued

14/08/2020 Edition 2 **Edition Issued**

14/08/2020

Estate Type

FEE SIMPLE

Registered Proprietor

AGL BARKER INLET PTY. LTD. (ACN: 622 351 660) OF L 24 200 GEORGE STRÈET SYDNEY NSW 2000

Description of Land

ALLOTMENT 1301 DEPOSITED PLAN 123497 IN THE AREA NAMED TORRENS ISLAND HUNDRED OF PORT ADELAIDE

Easements

SUBJECT TO EASEMENT(S) WITH LIMITATIONS OVER THE LAND MARKED EF ON D123497 EXPIRING ON 13/11/2044 OR PRIOR TERMINATION OF LEASE 13065180 (TG2 13099983)

SUBJECT TO EASEMENT(S) OVER THE LAND MARKED AT ON D123497 FOR THE TRANSMISSION OF TELECOMMUNICATION SIGNALS BY UNDERGROUND CABLE TO TRANSMISSION LESSOR CORPORATION OF 1 UNDIVIDED 2ND PART (SUBJECT TO LEASE 9061500) AND ELECTRANET PTY. LTD. OF 1 UNDIVIDED 2ND PART (TG 12416751)

SUBJECT TO EASEMENT(S) OVER THE LAND MARKED LL ON D123497 TO TRANSMISSION LESSOR CORPORATION OF 1 UNDIVIDED 2ND PART (SUBJECT TO LEASE 9061500) AND ELECTRANET PTY. LTD. OF 1 UNDIVIDED 2ND PART (TG 10650192)

SUBJECT TO RIGHT(S) OF WAY OVER THE LAND MARKED AN ON D123497 (TG 9470347)

SUBJECT TO RIGHT(S) OF WAY OVER THE LAND MARKED AN ON D123497 (TG 9528574)

SUBJECT TO RIGHT(S) OF WAY OVER THE LAND MARKED AN ON D123497 (TG 9528577)

SUBJECT TO RIGHT(S) OF WAY OVER THE LAND MARKED AN ON D123497 (TG 9528578)

SUBJECT TO RIGHT(S) OF WAY OVER THE LAND MARKED AN ON D123497 (TG 9528579)

SUBJECT TO RIGHT(S) OF WAY OVER THE LAND MARKED AN ON D123497 (TG 9528580)

SUBJECT TO RIGHT(S) OF WAY WITH LIMITATIONS OVER THE LAND MARKED AN ON D123497 (TG 9696226)

SUBJECT TO RIGHT(S) OF WAY WITH LIMITATIONS OVER THE LAND MARKED AU ON D123497 (TG 8983784)

SUBJECT TO RIGHT(S) OF WAY WITH LIMITATIONS OVER THE LAND MARKED AZ ON D123497 TO DISTRIBUTION LESSOR CORPORATION (SUBJECT TO LEASE 8890000) (TG 8983782)

TOGETHER WITH EASEMENT(S) OVER THE LAND MARKED AB ON D123497 FOR DRAINAGE PURPOSES (V 8963671)

TOGETHER WITH EASEMENT(S) OVER THE LAND MARKED AF ON D123497 (TG 9031528)

Land Services SA

Date/Time Customer Reference Order ID Register Search Plus (CT 6242/10) 23/02/2024 10:25AM

20240223002121

TOGETHER WITH EASEMENT(S) OVER THE LAND MARKED CC ON D123497 (TG 9031529)

TOGETHER WITH EASEMENT(S) OVER THE LAND MARKED L ON D123497 (TG 8981505)

TOGETHER WITH EASEMENT(S) OVER THE LAND MARKED M ON D123497 FOR DRAINAGE PURPOSES (V 8963671)

TOGETHER WITH EASEMENT(S) OVER THE LAND MARKED R ON D123497 (TG 9031528)

TOGETHER WITH EASEMENT(S) OVER THE LAND MARKED SS ON D123497 FOR DRAINAGE PURPOSES (V 8963671)

TOGETHER WITH EASEMENT(S) WITH LIMITATIONS OVER THE LAND MARKED J ON D123497 (TG 8983783)

TOGETHER WITH EASEMENT(S) WITH LIMITATIONS OVER THE LAND MARKED JJ ON D123497 (TG 8981507)

TOGETHER WITH FREE AND UNRESTRICTED RIGHT(S) OF WAY OVER THE LAND MARKED W ON D123497 (RTC 13332732)

TOGETHER WITH RIGHT(S) OF WAY OVER THE LAND MARKED AB ON D123497 (TG 9031527)

TOGETHER WITH RIGHT(S) OF WAY OVER THE LAND MARKED SS ON D123497 (TG 9031527)

TOGETHER WITH RIGHT(S) OF WAY WITH LIMITATIONS OVER THE LAND MARKED EE ON D123497 (TG 9031526)

Schedule of Dealings

NIL

Notations

Dealings Affecting Title	NIL
Priority Notices	NIL
Notations on Plan	NIL
Registrar-General's Notes	NIL
Administrative Interests	NIL

Date/Time **Customer Reference** Order ID

Register Search Plus (CT 6242/11) 23/02/2024 10:24AM 60718660 Task 1.2 20240223002098

The Registrar-General certifies that this Title Register Search displays the records maintained in the Register Book and other notations at the time of searching.

Certificate of Title - Volume 6242 Folio 11

Parent Title(s) CT 6224/108

Creating Dealing(s) RTC 13332732

Title Issued

14/08/2020 Edition 1 **Edition Issued**

14/08/2020

Estate Type

FEE SIMPLE

Registered Proprietor

AGL SA GENERATION PTY. LTD. (ACN: 081 074 204) OF L 24 200 GEORGE STREET SYDNEY NSW 2000

Description of Land

ALLOTMENT COMPRISING PIECES 1302 AND 1402 DEPOSITED PLAN 123497 IN THE AREA NAMED TORRENS ISLAND HUNDRED OF PORT ADELAIDE

Easements

SUBJECT TO EASEMENT(S) WITH LIMITATIONS OVER THE LAND MARKED EF ON D123497 EXPIRING ON 13/11/2044 OR PRIOR TERMINATION OF LEASE 13065180 (TG2 13099983)

SUBJECT TO EASEMENT(S) OVER THE LAND MARKED A ON D123497 TO TRANSMISSION LESSOR CORPORATION OF 1 UNDIVIDED 2ND PART (SUBJECT TO LEASE 9061500) AND ELECTRANET PTY. LTD. OF 1 UNDIVIDED 2ND PART (TG 8963672)

SUBJECT TO EASEMENT(S) OVER THE LAND MARKED AT ON D123497 FOR THE TRANSMISSION OF TELECOMMUNICATION SIGNALS BY UNDERGROUND CABLE TO TRANSMISSION LESSOR CORPORATION OF 1 UNDIVIDED 2ND PART (SUBJECT TO LEASE 9061500) AND ELECTRANET PTY. LTD. OF 1 UNDIVIDED 2ND PART (TG 12416751)

SUBJECT TO EASEMENT(S) OVER THE LAND MARKED AV ON D123497 TO TRANSMISSION LESSOR CORPORATION OF 1 UNDIVIDED 2ND PART (SUBJECT TO LEASE 9061500) AND ELECTRANET PTY. LTD. OF 1 UNDIVIDED 2ND PART (TG 8963674)

SUBJECT TO EASEMENT(S) OVER THE LAND MARKED B ON D123497 TO DISTRIBUTION LESSOR CORPORATION (SUBJECT TO LEASE 8890000) (TG 8963673)

SUBJECT TO EASEMENT(S) OVER THE LAND MARKED DA ON D123497 TO DISTRIBUTION LESSOR CORPORATION (SUBJECT TO LEASE 8890000) (TG 8963673)

SUBJECT TO EASEMENT(S) OVER THE LAND MARKED FFB ON D123497 (TG 9515267)

SUBJECT TO EASEMENT(S) OVER THE LAND MARKED GB ON D123497 (TG 10045717)

SUBJECT TO EASEMENT(S) OVER THE LAND MARKED GGC ON D123497 TO TRANSMISSION LESSOR CORPORATION OF 1 UNDIVIDED 2ND PART (SUBJECT TO LEASE 9061500) AND ELECTRANET PTY. LTD. OF 1 UNDIVIDED 2ND PART (TG 12416751)

SUBJECT TO EASEMENT(S) OVER THE LAND MARKED HA ON D123497 TO TRANSMISSION LESSOR CORPORATION OF 1 UNDIVIDED 2ND PART (SUBJECT TO LEASE 9061500) AND ELECTRANET PTY. LTD. OF 1 UNDIVIDED 2ND PART (TG 8963675)

SUBJECT TO EASEMENT(S) OVER THE LAND MARKED K ON D123497 (TG 8981506)

Land Services SA

Date/Time Customer Reference Order ID Register Search Plus (CT 6242/11) 23/02/2024 10:24AM 60718660 Task 1.2 20240223002098

SUBJECT TO EASEMENT(S) OVER THE LAND MARKED LL ON D123497 TO TRANSMISSION LESSOR CORPORATION OF 1 UNDIVIDED 2ND PART (SUBJECT TO LEASE 9061500) AND ELECTRANET PTY. LTD. OF 1 UNDIVIDED 2ND PART (TG 10650192)

SUBJECT TO EASEMENT(S) OVER THE LAND MARKED Q ON D123497 TO TRANSMISSION LESSOR CORPORATION OF 1 UNDIVIDED 2ND PART (SUBJECT TO LEASE 9061500) AND ELECTRANET PTY. LTD. OF 1 UNDIVIDED 2ND PART (V 8963671)

SUBJECT TO EASEMENT(S) OVER THE LAND MARKED QQA ON D123497 (TG 10045715)

SUBJECT TO EASEMENT(S) OVER THE LAND MARKED SA ON D123497 (TG 9074533)

SUBJECT TO FREE AND UNRESTRICTED RIGHT(S) OF WAY OVER THE LAND MARKED W ON D123497 (RTC 13332732)

SUBJECT TO RIGHT(S) OF WAY OVER THE LAND MARKED AN ON D123497 (TG 9470347)

SUBJECT TO RIGHT(S) OF WAY OVER THE LAND MARKED AN ON D123497 (TG 9528574)

SUBJECT TO RIGHT(S) OF WAY OVER THE LAND MARKED AN ON D123497 (TG 9528577)

SUBJECT TO RIGHT(S) OF WAY OVER THE LAND MARKED AN ON D123497 (TG 9528578)

SUBJECT TO RIGHT(S) OF WAY OVER THE LAND MARKED AN ON D123497 (TG 9528579)

SUBJECT TO RIGHT(S) OF WAY OVER THE LAND MARKED AN ON D123497 (TG 9528580)

SUBJECT TO RIGHT(S) OF WAY WITH LIMITATIONS OVER THE LAND MARKED AN ON D123497 (TG 9696226)

SUBJECT TO RIGHT(S) OF WAY WITH LIMITATIONS OVER THE LAND MARKED AU ON D123497 (TG 8983784)

SUBJECT TO RIGHT(S) OF WAY WITH LIMITATIONS OVER THE LAND MARKED AZ ON D123497 TO DISTRIBUTION LESSOR CORPORATION (SUBJECT TO LEASE 8890000) (TG 8983782)

TOGETHER WITH EASEMENT(S) OVER THE LAND MARKED AB ON D123497 FOR DRAINAGE PURPOSES (V 8963671)

TOGETHER WITH EASEMENT(S) OVER THE LAND MARKED AF ON D123497 (TG 9031528)

TOGETHER WITH EASEMENT(S) OVER THE LAND MARKED CC ON D123497 (TG 9031529)

TOGETHER WITH EASEMENT(S) OVER THE LAND MARKED L ON D123497 APPURTENANT ONLY TO PIECE 1302 (TG 8981505)

TOGETHER WITH EASEMENT(S) OVER THE LAND MARKED M ON D123497 FOR DRAINAGE PURPOSES (V 8963671)

TOGETHER WITH EASEMENT(S) OVER THE LAND MARKED R ON D123497 (TG 9031528)

TOGETHER WITH EASEMENT(S) OVER THE LAND MARKED SS ON D123497 FOR DRAINAGE PURPOSES (V 8963671)

TOGETHER WITH EASEMENT(S) WITH LIMITATIONS OVER THE LAND MARKED J ON D123497 (TG 8983783)

TOGETHER WITH EASEMENT(S) WITH LIMITATIONS OVER THE LAND MARKED JJ ON D123497 (TG 8981507)

TOGETHER WITH RIGHT(S) OF WAY OVER THE LAND MARKED AB ON D123497 (TG 9031527)

TOGETHER WITH RIGHT(S) OF WAY OVER THE LAND MARKED SS ON D123497 (TG 9031527)

TOGETHER WITH RIGHT(S) OF WAY WITH LIMITATIONS OVER THE LAND MARKED EE ON D123497 (TG 9031526)

Schedule of Dealings

Description

Dealing Number

10045716

LEASE TO SOUTH EAST AUSTRALIA GAS PTY. LTD. (ACN: 096 437 900), APT SPV2 PTY. LTD. (ACN: 095 483 453), APT SPV3 PTY. LTD. (ACN: 095 483 462), ANP SEA GAS SPV2 PTY. LTD. (ACN: 099 332 368), ANP SEA GAS SPV3 PTY. LTD. (ACN: 099 332 395), REST

Land Services SA

LAND			Product	Register Search Plus (CT 6242/11)
SERVICES			Date/Time	23/02/2024 10:24AM
SA			Customer Reference	60718660 Task 1.2
			Order ID	20240223002098
	SEA GAS S 095 483 44 IN G419/20	SPV2 PTY. LTD. (ACN: 099 332 3 4) COMMENCING ON 01/07/200 03)	331) AND REST SEA G 1 AND EXPIRING ON 3	AS SPV1 PTY. LTD. (ACN: 30/06/2102 OF PORTION (A
13065180		ELECTRANET PTY. LTD. (ACN: ON 13/11/2044 OF PORTION (A		NCING ON 14/11/2018 AND
13099983		065180 IS TOGETHER WITH AN OR PRIOR TERMINATION OF L		
Notations				
Dealings Affecting	Title	NIL		
Priority Notices		NIL		
Notations on Plan		NIL		
Registrar-General's	s Notes			
PLAN FOR LEASE PL APPROVED FILED PL APPROVED FX25433	AN FOR LEA	DE G419/2003 ASE PURPOSES FX254336		

Administrative Interests NIL

Product Date/Time Customer Reference Order ID

Edition Issued

15/08/2018

Register Search (CT 6211/947) 28/02/2025 04:09PM OR-18W9BI3VXJ6ENE 20250228008605

REAL PROPERTY ACT, 1886

The Registrar-General certifies that this Title Register Search displays the records maintained in the Register Book and other notations at the time of searching.

Edition 1

Certificate of Title - Volume 6211 Folio 947

Parent Title(s) CT 6134/704, CT 6211/946

15/08/2018

Creating Dealing(s) VE 12924583

Title Issued

Diagram Reference

Estate Type

FEE SIMPLE

Registered Proprietor

GENERATION LESSOR CORPORATION OF GPO BOX 1045 ADELAIDE SA 5001

Description of Land

ALLOTMENT COMPRISING PIECES 301 AND 401 DEPOSITED PLAN 55734 IN THE AREA NAMED TORRENS ISLAND OUT OF HUNDREDS (ADELAIDE) AND HUNDRED OF PORT ADELAIDE

Easements

SUBJECT TO EASEMENT(S) OVER THE LAND MARKED A ON F253058 TO TRANSMISSION LESSOR CORPORATION OF 1 UNDIVIDED 2ND PART (SUBJECT TO LEASE 9061500) AND ELECTRANET PTY. LTD. OF 1 UNDIVIDED 2ND PART (TG 8963672)

SUBJECT TO EASEMENT(S) OVER THE LAND MARKED AE ON F253058 (TG 8998207)

SUBJECT TO EASEMENT(S) OVER THE LAND MARKED AF ON F253058 (TG 9031528)

SUBJECT TO EASEMENT(S) OVER THE LAND MARKED B.DA.GC.U.V.W.Y AND Z ON F253058 TO DISTRIBUTION LESSOR CORPORATION (SUBJECT TO LEASE 8890000) (TG 8963673)

SUBJECT TO EASEMENT(S) OVER THE LAND MARKED FFC ON F253058 (TG 9684156)

SUBJECT TO EASEMENT(S) OVER THE LAND MARKED GGB ON F253058 TO TRANSMISSION LESSOR CORPORATION OF 1 UNDIVIDED 2ND PART (SUBJECT TO LEASE 9061500) AND ELECTRANET PTY. LTD. OF 1 UNDIVIDED 2ND PART (TG 11630600)

SUBJECT TO EASEMENT(S) OVER THE LAND MARKED HH ON F253058 (TG 9101186)

SUBJECT TO EASEMENT(S) OVER THE LAND MARKED K ON F253058 (TG 8981506)

SUBJECT TO EASEMENT(S) OVER THE LAND MARKED KK ON F253058 TO TRANSMISSION LESSOR CORPORATION OF 1 UNDIVIDED 2ND PART (SUBJECT TO LEASE 9061500) AND ELECTRANET PTY. LTD. OF 1 UNDIVIDED 2ND PART (TG 10650194)

SUBJECT TO EASEMENT(S) OVER THE LAND MARKED N ON F253058 FOR WATER SUPPLY PURPOSES (V 8963671)

SUBJECT TO EASEMENT(S) OVER THE LAND MARKED Q ON F253058 TO TRANSMISSION LESSOR CORPORATION OF 1 UNDIVIDED 2ND PART (SUBJECT TO LEASE 9061500) AND ELECTRANET PTY. LTD. OF 1 UNDIVIDED 2ND PART (V 8963671)

SUBJECT TO EASEMENT(S) OVER THE LAND MARKED QQ ON F253058 (TG 10490935)

Land Services SA

SUBJECT TO EASEMENT(S) OVER THE LAND MARKED S ON F253058 (TG 8998211)

SUBJECT TO EASEMENT(S) WITH LIMITATIONS OVER THE LAND MARKED C AND X ON F253058 TO TRANSMISSION LESSOR CORPORATION OF 1 UNDIVIDED 2ND PART (SUBJECT TO LEASE 9061500) AND ELECTRANET PTY. LTD. OF 1 UNDIVIDED 2ND PART (TG 8963674)

SUBJECT TO EASEMENT(S) WITH LIMITATIONS OVER THE LAND MARKED UUA.VV.WW.YY AND ZZ ON F253058 TO DISTRIBUTION LESSOR CORPORATION (SUBJECT TO LEASE 8890000) (TG 8963673)

SUBJECT TO RIGHT(S) OF WAY WITH LIMITATIONS OVER THE LAND MARKED EB ON F253058 (TG 8983784)

SUBJECT TO RIGHT(S) OF WAY WITH LIMITATIONS OVER THE LAND MARKED FFD ON F253058 TO DISTRIBUTION LESSOR CORPORATION (SUBJECT TO LEASE 8890000) (TG 8983782)

TOGETHER WITH EASEMENT(S) OVER THE LAND MARKED AAB ON F253058 (TG 8998206)

TOGETHER WITH EASEMENT(S) OVER THE LAND MARKED AB.M AND SS ON F253058 FOR DRAINAGE PURPOSES (V 8963671)

TOGETHER WITH EASEMENT(S) OVER THE LAND MARKED CC ON F253058 (TG 8998208)

TOGETHER WITH EASEMENT(S) OVER THE LAND MARKED L ON F253058 APPURTENANT ONLY TO PIECE 301 (TG 8981505)

TOGETHER WITH EASEMENT(S) OVER THE LAND MARKED TA ON F253058 (TG 8998212)

TOGETHER WITH EASEMENT(S) WITH LIMITATIONS OVER THE LAND MARKED J ON F253058 (TG 8983783)

TOGETHER WITH EASEMENT(S) WITH LIMITATIONS OVER THE LAND MARKED JJ ON F253058 (TG 8981507)

TOGETHER WITH RIGHT(S) OF WAY OVER THE LAND MARKED AN ON F253058 (TG 9528577)

TOGETHER WITH RIGHT(S) OF WAY WITH LIMITATIONS OVER THE LAND MARKED AB AND SS ON F253058 (TG 9114327)

TOGETHER WITH RIGHT(S) OF WAY WITH LIMITATIONS OVER THE LAND MARKED EE ON F253058 (TG 9114321)

Schedule of Dealings

Dealing Number	Description
9270813	LEASE TO AGL SA GENERATION PTY. LTD. COMMENCING ON 7/6/2000 AND EXPIRING ON 6/6/2100 OF PORTION (TIPS A IN G22/2002) TOGETHER WITH THE EXISTING EASEMENTS AND RIGHTS OF WAY PURSUANT TO THE ELECTRICITY CORPORATIONS (RESTRUCTURING AND DISPOSAL) ACT 1999
9270814	LEASE TO AGL SA GENERATION PTY. LTD. COMMENCING ON 7/6/2000 AND EXPIRING ON 6/6/2100 OF PORTION (TIPS B IN G22/2002 TOGETHER WITH THE EXISTING EASEMENTS AND RIGHTS OF WAY PURSUANT TO THE ELECTRICITY CORPORATIONS (RESTRUCTURING AND DISPOSAL) ACT 1999
13065181	UNDERLEASE OF LAND IN LEASE 9270814 TO ELECTRANET PTY. LTD. (ACN: 094 482 416) COMMENCING ON 14/11/2018 AND EXPIRING ON 13/11/2044 OF PORTION (AREA C IN F254336)
13879270	UNDERLEASE OF LAND IN LEASE 9270813 TO ELECTRANET PTY. LTD. (ACN: 094 482 416) COMMENCING ON 16/06/2022 AND EXPIRING ON 01/01/2044 OF PORTION (AREA D IN F257737)
Notations	

Dealings Affecting Title	NIL
Priority Notices	NIL
Notations on Plan	NIL
Registrar-General's Notes	

Land Services SA

Product Date/Time Customer Reference Order ID Register Search (CT 6211/947) 28/02/2025 04:09PM OR-18W9BI3VXJ6ENE 20250228008605

APPROVED G19/2022 PLAN FOR LEASE PURPOSES VIDE G22/2002 APPROVED FILED PLAN FOR LEASE PURPOSES FX254336 APPROVED FILED PLAN FOR LEASE PURPOSES FX257737 APPROVED FILED PLAN FOR LEASE PURPOSES FX59229 APPROVED FILED PLAN FOR LEASE PURPOSES FX59391

Administrative Interests NIL

APPENDIX D PROPOSAL PLANS

0

l m

100

50

1:800

CERTIFICATIO

DN	No.	CERTIFIER	DATE

REV

PRINT ALL COPIES IN COLOUR

LE GIS ROUTE
CKUP LV SUPPLY
ORM WATER PIPE
IG STORM WATER PIPE
SED GAS PIPE ROUTE
SED DIESEL BALANCING PIPE

LEGEND

9

- W18WV46TS-DF AND AUXILIARIES EQUIPMENT EMERGENCY DIESEL GENERATOR 2. MAIN LV/CONTROL ROOM 3 4. OFFICES CARPARK
- 30x12 SPARES SHED
- 6 COMPRESSED AIR SHED/BUILDING 8.
- RAW & FIRE FIGHTING WATER TANK
- DIESEL FUEL STORAGE STORMWATER POND
- 10. FUEL GAS BLOCK 11.
- EXISTING BIPS GIS SWITCHROOM 12.
- 13. DIESEL / LIQUID FUEL UNLOADING BAY AUX TRANSFORMER 0.4kV/MV 14.
- 15. STEP UP TRANSFORMER 1 MV/275kV
- STEP UP TRANSFORMER 2 MV/275kV 16.
- COOLERS RADIATORS MOUNTED ON ENGINE HALL 17.

18

- EVAPORATION POND 18. 19. CLEAN LUBE OIL TANK
- USED LUBE OIL TANK 20.
- 21. SERVICE LUBE OIL TANK
- 22. SLUDGE TANK
- 23. SCR REAGENT TANK 24. PUMP BUILDING
- 25. SPEL UNIT

able pulling pits			and the second sec				
CONSTRUCTION STA	TUS			PROJECT			
PRELIMINAR		BARKEF STAG	R INLE E 2 (B	T POWER STATION IPS2) EXPANSION			
DRAWN BY D.JEFFERS DESIGNED BY M.FERRARO		W18WV46TS-DF GENERAL ARRANGEMENT					
STATUS	CODE		DOC	UMENT CODE			
	W1	5273	87-00	00-DRG-EE-0006			
DOCUMENT STAT	E	SCALE	SIZE	REFERENCE No.	REV		
WORK IN PROGRE	SS	1:400	A1	EE-0006	A.01		

		<u> </u>	9		10	
ENGIN	IE HA					
ltem No.	Pcs.	Code	Description	Volume [m³]	Weight [kg] Incl. liquids	Mounting level (Floor level)
1	11	SCA	Engine generator set W18V46TS-DF		434531	+0.000
5	11	MOD	Engine Auxiliary Module			+0.000
20	11	MOD	Heating & Cooling Module			+0.000
157	11	QBF	Oil mist coalescer		-	+6.540
201	1	TCB	Instrument air bottle	0.5	130	+0.000
203	12	TSB	Starting air bottle	4.8	2023	+0.000
250 300	2	VBA	Maintenance water tank	10	11500	+0.000
350 350	11	NGA NHA	Intake air filter Exhaust gas module		2096	+1.600
355	11	NHA	Exhaust gas ventilation fan		278	+3.580
553 553	11	BAN	Neutral point cubicle		270	+0.000
56b	11	BFA	LV Switchgear			+0.000
668	11	CFE	Local control panel 1			+0.000
581	11	0.1	Capacitor			+0.000
701	11	EAA	Ventilation unit, aux. area	18	2100	+1.600
702	22	EAA	Ventilation unit, engine hall	18	_	+0.000
IV, L	_V AN	D CON	IPRESSOR BUILDING			
tem No.	Pcs.	Code	Description	Volume [m³]	Weight [kg] Incl. liquids	Mounting level (Floor level)
200	4	ТСА	Instrument and working air unit			+0.000
202	5	TSA	Starting air unit			+0.000
552	4	BAC	MV Switchgear			+2.100
655 655	4	BEY	DC-panel			+2.100
56a	2	BFA	LV Switchgear			+2.100
561	1	BLI	Lighting panel			+2.100
65	1	BLQ	Ventilation panel			+2.100
679	1		Office IT equipment			+2.100
686	1		Server rack		135	+2.100
	4		Ventilation outlet fan			-
		DING	Ventilation outlet fan			_
PUMF tem	P BUIL	DING Code	Ventilation outlet fan Description	Volume [m³]	Weight [kg] Operative	– Mounting level (Floor level)
UMF tem No.	P BUIL			Volume [m³]		level
UMF tem No.	P BUIL Pcs.	Code	Description LFO Feeder 3.0	Volume [m³]		level (Floor level) ±0.000
UMF .em No.	Pcs.	Code PCA	Description	Volume [m³]	Operative	level (Floor level)
UMF tem No. 113 50 54	Pcs.	Code PCA QAA	Description LFO Feeder 3.0 LO Unloading Pump Unit (clean)	Volume [m³]	Operative 264	level (Floor level) ±0.000 ±0.000
UMF No.	Pcs.	Code PCA QAA QAE	Description LFO Feeder 3.0 LO Unloading Pump Unit (clean) LO Transfer Pump Unit	[m³]	Operative 264	level (Floor level) ±0.000 ±0.000 ±0.000
UMF tem No. 113 50 54 201	Pcs.	Code PCA QAA QAE TCC	Description LFO Feeder 3.0 LO Unloading Pump Unit (clean) LO Transfer Pump Unit Instrument Air Bottle	[m³]	Operative 264	level (Floor level) ±0.000 ±0.000 ±0.000
UMF sem No. 113 50 54 201 106 508	Pcs.	Code PCA QAA QAE TCC YAA	Description LFO Feeder 3.0 LO Unloading Pump Unit (clean) LO Transfer Pump Unit Instrument Air Bottle Urea unloading unit Sludge Transfer Pump Unit LV Switchgear	[m³]	Operative 264 665	level (Floor level) ±0.000 ±0.000 ±0.000 ±0.000
UMF .em No. 113 50 54 201 106 508 557 561	Pcs.	Code PCA QAA QAE TCC YAA DDD BFA BLI	Description LFO Feeder 3.0 LO Unloading Pump Unit (clean) LO Transfer Pump Unit Instrument Air Bottle Urea unloading unit Sludge Transfer Pump Unit LV Switchgear Lighting Panel	[m³]	Operative 264 665	level (Floor level) ±0.000 ±0.000 ±0.000 ±0.000
UMF .em No. 50 54 201 608 557 561 565	Pcs.	Code PCA QAA QAE TCC YAA DDD BFA BLI BLQ	Description LFO Feeder 3.0 LO Unloading Pump Unit (clean) LO Transfer Pump Unit Instrument Air Bottle Urea unloading unit Sludge Transfer Pump Unit LV Switchgear Lighting Panel HVAC panel	[m³]	Operative 264 665	level (Floor level) ±0.000 ±0.000 ±0.000 ±0.000
UMF em No. 13 50 54 201 608 57 661 665 587	P BUIL Pcs. 3 2 1 1 1 1 1 1 1 1 1 1 1 1	Code PCA QAA QAE TCC YAA DDD BFA BLI	Description LFO Feeder 3.0 LO Unloading Pump Unit (clean) LO Transfer Pump Unit Instrument Air Bottle Urea unloading unit Sludge Transfer Pump Unit LV Switchgear Lighting Panel	[m³]	Operative 264 665	level (Floor level) ±0.000 ±0.000 ±0.000 ±0.000
UMF 2.em No. 50 54 201 406 508 557 561 565 587	Pcs.	Code PCA QAA QAE TCC YAA DDD BFA BLI BLQ	Description LFO Feeder 3.0 LO Unloading Pump Unit (clean) LO Transfer Pump Unit Instrument Air Bottle Urea unloading unit Sludge Transfer Pump Unit LV Switchgear Lighting Panel HVAC panel	[m³]	Operative 264 665	level (Floor level) ±0.000 ±0.000 ±0.000 ±0.000
PUMF tem No. 113 150 154 201 406 508 557 561 565 587 51TE	P BUIL Pcs. 3 2 1 1 1 1 1 1 1 1 1 1 1 1	Code PCA QAA QAE TCC YAA DDD BFA BLI BLQ BLQ	Description LFO Feeder 3.0 LO Unloading Pump Unit (clean) LO Transfer Pump Unit Instrument Air Bottle Urea unloading unit Sludge Transfer Pump Unit LV Switchgear Lighting Panel HVAC panel	[m³]	Operative 264 665 177	level (Floor level) ±0.000 ±0.000 ±0.000 ±0.000 ±0.000
PUMF tem No. 113 150 154 201 406 508 557 661 565 587 51TE tem No.	P BUIL Pcs. 3 2 1 1 1 1 1 1 1 1 1 4 REA	Code PCA QAA QAE TCC YAA DDD BFA BLI BLQ BLQ	Description LFO Feeder 3.0 LO Unloading Pump Unit (clean) LO Transfer Pump Unit Instrument Air Bottle Urea unloading unit Sludge Transfer Pump Unit LV Switchgear Lighting Panel HVAC panel Process ventilation panel Description Fuel gas supply unit	[m³]	Operative 264 665 177 Weight [kg]	level (Floor level) ±0.000 ±0.000 ±0.000 ±0.000 ±0.000
PUMF tem No. 113 150 154 201 154 201 154 201 154 201 156 565 587 565 587 565 587 565 587 565 587 565 587 517E	 Pcs. 3 2 1 1 1 1 1 AREA Pcs. 11 1 	Code PCA QAA QAE TCC YAA DDD BFA BLI BLQ BLQ	Description LFO Feeder 3.0 LO Unloading Pump Unit (clean) LO Transfer Pump Unit Instrument Air Bottle Urea unloading unit Sludge Transfer Pump Unit LV Switchgear Lighting Panel HVAC panel Process ventilation panel Description	[m³]	Operative 264 665 177 Weight [kg] Incl. liquids	level (Floor level) ±0.000 ±0.000 ±0.000 ±0.000 ±0.000
UMF 113 50 54 201 406 508 557 561 565 587 ITE tem No. 24 34 251	 BUIL Pcs. 3 2 1 1 1 1 1 1 1 AREA Pcs. 11 1 77 	Code PCA QAA QAE TCC YAA DDD BFA BLI BLQ BLQ BLQ Code ZAC	Description LFO Feeder 3.0 LO Unloading Pump Unit (clean) LO Transfer Pump Unit Instrument Air Bottle Urea unloading unit Sludge Transfer Pump Unit LV Switchgear Lighting Panel HVAC panel Process ventilation panel Description Fuel gas supply unit Real-time gas analyzer Radiator NL2	[m³]	Operative 264 665 177 177 Weight [kg] Incl. liquids 1070 65 6030	level (Floor level) ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 (Floor level) (Floor level)
UMF iem No. 113 50 54 201 i06 508 557 561 565 567 561 565 567 561 565 587 ITE iem No. 24 34 251 252	 Pcs. BUIL Pcs. 1 1 1 1 1 AREA Pcs. 11 1 77 11 	Code PCA QAA QAE TCC YAA DDD BFA BLQ BLQ BLQ BLQ Code ZAC ZAC	Description LFO Feeder 3.0 LO Unloading Pump Unit (clean) LO Transfer Pump Unit Instrument Air Bottle Urea unloading unit Sludge Transfer Pump Unit LV Switchgear Lighting Panel HVAC panel Process ventilation panel Description Fuel gas supply unit Real-time gas analyzer Radiator NL2 Expansion vessel	[m³]	Operative 264 665 177 177 Weight [kg] Incl. liquids 1070 65 6030 1570	level (Floor level) ±0.000 ±0.000 ±0.000 ±0.000 ±0.000
UMF iem No. 113 50 54 201 106 565 567 561 565 587 1TE iem No. 24 34 252 351	 Pcs. 3 2 1 <li< td=""><td>Code PCA QAA QAE TCC YAA DDD BFA BLI BLQ BLQ BLQ Code ZAC</td><td>Description LFO Feeder 3.0 LO Unloading Pump Unit (clean) LO Transfer Pump Unit Instrument Air Bottle Urea unloading unit Sludge Transfer Pump Unit LV Switchgear Lighting Panel HVAC panel Process ventilation panel Description Fuel gas supply unit Real-time gas analyzer Radiator NL2 Expansion vessel Exhaust gas silencer</td><td>[m³]</td><td>Operative 264 665 177 177 Weight [kg] Incl. liquids 1070 65 6030</td><td>level (Floor level) ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 (Floor level) (Floor level)</td></li<>	Code PCA QAA QAE TCC YAA DDD BFA BLI BLQ BLQ BLQ Code ZAC	Description LFO Feeder 3.0 LO Unloading Pump Unit (clean) LO Transfer Pump Unit Instrument Air Bottle Urea unloading unit Sludge Transfer Pump Unit LV Switchgear Lighting Panel HVAC panel Process ventilation panel Description Fuel gas supply unit Real-time gas analyzer Radiator NL2 Expansion vessel Exhaust gas silencer	[m³]	Operative 264 665 177 177 Weight [kg] Incl. liquids 1070 65 6030	level (Floor level) ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 (Floor level) (Floor level)
UMF iem No. 113 50 54 201 106 508 57 561 565 587 1TE iem No. 24 34 251 252 356	 BUIL Pcs. 3 2 1 1 1 1 1 1 1 AREA Pcs. 11 1 77 11 11 22 	Code PCA QAA QAE TCC YAA DDD BFA BLI BLQ BLQ BLQ Code ZAC ZAC ZAC VCA VCA VCA	Description LFO Feeder 3.0 LO Unloading Pump Unit (clean) LO Transfer Pump Unit Instrument Air Bottle Urea unloading unit Sludge Transfer Pump Unit LV Switchgear Lighting Panel HVAC panel Process ventilation panel Description Fuel gas supply unit Real-time gas analyzer Radiator NL2 Expansion vessel Exhaust gas silencer Rupture disk	[m³]	Operative 264 665 177 177 Weight [kg] Incl. liquids 1070 65 6030 1570	level (Floor level) ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 (Floor level) (Floor level)
UMF iem No. 113 50 54 201 406 565 567 561 565 567 565 567 561 565 567 565 567 561 565 567 561 562 564 576 562 564 577 566 567 567 567 567 567 567	 BUIL Pcs. 3 2 1 77 11 1 22 11 	Code PCA QAA QAE TCC YAA DDD BFA BLQ BLQ BLQ BLQ BLQ Code ZAC ZAC ZAC VCA VEA VEA NHA	DescriptionLFO Feeder 3.0LO Unloading Pump Unit (clean)LO Transfer Pump UnitInstrument Air BottleUrea unloading unitSludge Transfer Pump UnitLV SwitchgearLighting PanelHVAC panelProcess ventilation panelDescriptionFuel gas supply unitReal-time gas analyzerRadiator NL2Expansion vesselExhaust gas silencerRupture diskSCR	[m³]	Operative 264 665 177 177 Weight [kg] Incl. liquids 1070 65 6030 1570	level (Floor level) ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 (Floor level) (Floor level)
UMF Lem No. 113 50 54 201 406 508 557 561 565 567 561 565 567 561 565 567 561 565 577 561 565 577 561 565 567 567 567 567 567 567 567	 BUIL Pcs. 3 2 1 1 1 1 1 1 1 1 1 77 11 11 22 11 3 	Code PCA QAA QAE TCC YAA DDD BFA BLI BLQ BLQ BLQ BLQ Code ZAC ZAC VCA VCA VCA VCA VCA VCA VCA VCA	DescriptionLFO Feeder 3.0LO Unloading Pump Unit (clean)LO Transfer Pump UnitInstrument Air BottleUrea unloading unitSludge Transfer Pump UnitLV SwitchgearLighting PanelHVAC panelProcess ventilation panelDescriptionFuel gas supply unitReal-time gas analyzerRadiator NL2Expansion vesselExhaust gas silencerRupture diskSCROily water collecting pit	[m³]	Operative 264 665 177 177 Weight [kg] Incl. liquids 1070 65 6030 1570	level (Floor level) ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 (Floor level) (Floor level)
PUMF tem No. 113 150 154 201 406 508 565 661 565 661 565 661 565 661 565 661 565 661 565 661 565 57 565 57 57 565 57 565 57 57 565 57 565 57 57 565 57 57 565 57 57 565 57 57 57 57 57 57 57 57 57 57 57 57 57	 BUIL Pcs. 3 2 1 77 11 1 22 11 	Code QAA QAE TCC YAA DDD BFA BLI BLQ BLQ BLQ BLQ Code ZAC ZAC VCA VCA VCA VCA VCA VEA VEA VEA VEA VEA	DescriptionLFO Feeder 3.0LO Unloading Pump Unit (clean)LO Transfer Pump UnitInstrument Air BottleUrea unloading unitSludge Transfer Pump UnitLV SwitchgearLighting PanelHVAC panelProcess ventilation panelDescriptionFuel gas supply unitReal-time gas analyzerRadiator NL2Expansion vesselExhaust gas silencerRupture diskSCROily water collecting pitControl pit	[m³]	Operative 264 665 177 177 Weight [kg] Incl. liquids 1070 65 6030 1570	level (Floor level) ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 (Floor level) (Floor level)
PUMF tem No. 113 150 154 201 406 508 661 565 661 565 661 565 661 565 661 565 661 565 7 661 565 7 661 565 7 661 565 7 661 565 7 6 6 508 7 6 512 552	 BUIL Pcs. 3 2 1 1 1 1 1 1 1 1 1 77 11 11 22 11 3 	Code PCA QAA QAE TCC YAA DDD BFA BLI BLQ BLQ BLQ BLQ Code ZAC ZAC VCA VCA VCA VCA VCA VCA VCA VCA VCA V	Description LFO Feeder 3.0 LO Unloading Pump Unit (clean) LO Transfer Pump Unit Instrument Air Bottle Urea unloading unit Sludge Transfer Pump Unit LV Switchgear Lighting Panel HVAC panel Process ventilation panel Process ventilation panel Fuel gas supply unit Real-time gas analyzer Radiator NL2 Expansion vessel Exhaust gas silencer Rupture disk SCR Oily water collecting pit Control pit Treated water tank	[m³]	Operative 264 665 177 177 Weight [kg] Incl. liquids 1070 65 6030 1570	level (Floor level) ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 (Floor level) (Floor level)
PUMF tem No. 113 150 154 201 406 508 557 661 565 661 565 661 565 661 565 661 565 661 565 661 565 661 565 661 565 7 661 565 7 500 512 552 500	 BUIL Pcs. 3 2 1 1	Code PCA QAA QAE TCC YAA DDD BFA BL0 BL0 BL0 BL0 Code Code VCA VCA VCA VCA VCA VCA VCA VCA	DescriptionLFO Feeder 3.0LO Unloading Pump Unit (clean)LO Transfer Pump UnitInstrument Air BottleUrea unloading unitSludge Transfer Pump UnitLV SwitchgearLighting PanelHVAC panelProcess ventilation panelDescriptionFuel gas supply unitReal-time gas analyzerRadiator NL2Expansion vesselExhaust gas silencerRupture diskSCROily water collecting pitControl pitTreated water tankFire/raw water tank	[m³]	Operative 264 665 177 177 Weight [kg] Incl. liquids 1070 65 6030 1570	level (Floor level) ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 (Floor level) (Floor level)
PUMF tem No. 113 150 154 201 406 508 661 665 661 665 687 661 665 687 661 665 687 661 665 687 603 508 124 134 251 252 351 356 403 500 512 552 600 602	P BUIL Pcs. 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 3 2 1 1 1 3 2 1 1 1 1	Code QAA QAE TCC YAA DDD BFA BLQ BLQ BLQ BLQ BLQ CODE K CODE V CA VCA V CA V CA V CA V CA V CA V CA	DescriptionLFO Feeder 3.0LO Unloading Pump Unit (clean)LO Transfer Pump UnitInstrument Air BottleUrea unloading unitSludge Transfer Pump UnitLV SwitchgearLighting PanelHVAC panelProcess ventilation panelDescriptionFuel gas supply unitReal-time gas analyzerRadiator NL2Expansion vesselExhaust gas silencerRupture diskSCROily water collecting pitControl pitTreated water tankFire /raw water tankFire pump station	[m³]	Operative 264 665 177 177 Weight [kg] Incl. liquids 1070 65 6030 1570	level (Floor level) ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 (Floor level) (Floor level)
PUMF tem No. 113 150 154 201 406 508 657 661 665 687 661 665 687 661 665 687 617 665 687 617 8 124 134 251 252 351 356 403 500 512 552 600 602 602 651	 BUIL Pcs. 3 2 1 1 1 1 1 1 1 1 1 77 11 1 77 11 11 22 1 3 2 1 1 1 	Code PCA QAA QAE TCC YAA DDD BFA BL0 BL0 BL0 BL0 Code Code VCA VCA VCA VCA VCA VCA VCA VCA	DescriptionLFO Feeder 3.0LO Unloading Pump Unit (clean)LO Transfer Pump UnitInstrument Air BottleUrea unloading unitSludge Transfer Pump UnitLV SwitchgearLighting PanelHVAC panelProcess ventilation panelProcess ventilation panelExpansion vesselExpansion vesselExhaust gas silencerRupture diskSCROily water collecting pitControl pitTreated water tankFire pump stationStep-up transformer	[m³]	Operative 264 665 177 177 Weight [kg] Incl. liquids 1070 65 6030 1570	level (Floor level) ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 (Floor level) (Floor level)
PUMF tem No. 113 150 154 201 406 508 657 661 665 687 661 665 687 661 665 687 61TE tem No. 124 134 252 351 356 403 552 600 602 651 659	P BUIL Pcs. 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 3 2 1 1 1 3 2 1 1 1 1	Code PCA QAA QAE TCC YAA DDD BFA BL0 BL0 BL0 BL0 Code VCA VCA VCA VCA VCA VCA VEA VCA VEA VEA VEA VEA VEA VEA VEA VE	DescriptionLFO Feeder 3.0LO Unloading Pump Unit (clean)LO Transfer Pump UnitInstrument Air BottleUrea unloading unitSludge Transfer Pump UnitLV SwitchgearLighting PanelHVAC panelProcess ventilation panelDescriptionFuel gas supply unitReal-time gas analyzerRadiator NL2Expansion vesselExhaust gas silencerRupture diskSCROily water collecting pitControl pitTreated water tankFire pump stationStation transformer	[m³]	Operative 264 665 177 177 Weight [kg] Incl. liquids 1070 65 6030 1570	level (Floor level) ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 (Floor level) (Floor level)
713 PUMF Item No. 113 150 154 201 406 508 657 661 665 687 661 665 687 SITE Item No. 124 134 251 252 356 403 500 512 552 600 602 602 651 659 663 703	 BUIL Pcs. 3 2 1 1 1 1 1 1 1 1 1 77 11 1 77 11 11 22 1 3 2 1 1 1 	Code PCA QAA QAE TCC YAA DDD BFA BL0 BL0 BL0 BL0 Code Code VCA VCA VCA VCA VCA VCA VCA VCA	DescriptionLFO Feeder 3.0LO Unloading Pump Unit (clean)LO Transfer Pump UnitInstrument Air BottleUrea unloading unitSludge Transfer Pump UnitLV SwitchgearLighting PanelHVAC panelProcess ventilation panelProcess ventilation panelExpansion vesselExpansion vesselExhaust gas silencerRupture diskSCROily water collecting pitControl pitTreated water tankFire pump stationStep-up transformer	[m³]	Operative 264 665 177 177 Weight [kg] Incl. liquids 1070 65 6030 1570	level (Floor level) ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 (Floor level) (Floor level)

© Wärtsilä Finla. Energy Busin					Master Layout _ Engine hall, plan					and shall neither	
			ASLYDRG	<u>;</u>	AGL -	BIPS	2.0		Proj. no.	property of Wartsila (
Product: W18V46TS-DF Image: Organization of the second se				Units: mm/kg	11 x W18V46TS-DF Based on Document: Customer Document:					is the	
CHKD 03-Feb-2025 Rony Francis					Page No. 1/1	^{Scale:} 1:250	Size: A1	Doc. ID: DESA	40002838	98 XX Rev.	this drawing
	9 Confidential										

	5			6			7			8
				MV, L	V AN	D CON	IPRESSOR BUILDING			
Description	Volume We [m³] Ind	eight [kg] cl. liquids	Mounting level (Floor level)	ltem No.	Pcs.	Code	Description	Volume [m³]	Weight [kg] Incl. liquids	Mounting level (Floor level)
gas supply unit		1070		200	4	ТСА	Instrument and working air unit			+0.000
-time gas analyzer		65		202	5	TSA	Starting air unit			+0.000
itor NL2		6030	+16.620	652	4	BAC	MV Switchgear			+2.100
nsion vessel	1.2	1570	+17.800	655	4	BEY	DC-panel			+2.100
ust gas silencer		12560		656a	2	BFA	LV Switchgear			+2.100
ure disk				661	1	BLI	Lighting panel			+2.100
1 11 1• •1				665	1	BLQ	Ventilation panel			+2.100
water collecting pit	2.5			679	1		Office IT equipment			+2.100
ol pit				686	1		Server rack		135	+2.100
ed water tank	10			713	4		Ventilation outlet fan			_
raw water tank	1000			PUMP	BLIII			I	l	
pump station										
-up transformer on transformer starting unit lation unit		2000		Item No.	Pcs.	Code	Description	Volume [m³]	Weight [kg] Operative	Mounting level (Floor level)
		2000		113	3	PCA	LFO Feeder 3.0			±0.000
				150	2	QAA	LO Unloading Pump Unit (clean)		264	±0.000
				154	1	QAE	LO Transfer Pump Unit		665	±0.000
				201	1	TCC	Instrument Air Bottle	0,27		±0.000
				406	1	YAA	Urea unloading unit			±0.000
				508	1	DDD	Sludge Transfer Pump Unit		177	±0.000
				657	1		IV Switchaear			

WORK IN PROGRESS

A1

5	6	7	8
	$ \begin{array}{c} $	AIR INTAKE STACK FUEL GAS BLOCK CCW FIN FAN COOLER GENERATOR GENERATOR STEP-UP TRANSFOR AUXILIARY TRANSFORMER AUXILIARY TRANSFORMER LCI / EXCITATION TRANSFORMER LCI OUTPUT TRANSFORMER (SCO LCI & START-UP EXC.TRANSFOR GENERATOR BUS DUCT GENERATOR BUS DUCT GENERATOR CIRCUIT BREAKER E-ROOM RAW & FIRE FIGHTING WATER TA CEMS FUEL GAS AREA BLACK START DIESEL GENERATO COMPRESSED AIR STATION PEECC (PACKAGED ELECTRIC & EI	MER MER B ANK DR AREA
	×	NOT SHOWN ON THIS DRAWING	(
50m 	0 <u>5</u> Scale 1: 250	10 15 20m	D
	A 2022–12–23 Yashraj Rev. Rev. / Date Created to	y Checked by Approved by Descript	
ATUS 2022-1	Project Replaces Responsible dept. GPS/PSAE/AOP IPS Number	1x9F.04 Indoor REFERENCE Derived from Customer Code Created by Checked by Yashraj Singh S. Mukherjee Document Type Scale	KKS Approved by R. Morks
ATUS 202 5	1610753 Legal Owner G	DRAWING 1 : 250	Decement status Pormat DRAFT A2 Identification number A2 Identification number Lang. Rev. Date A 2022-12-23 E 1/1

REV	DATE	REVISION DETAILS	REV	DRAWN	DESIGNED	VERIFIED	APPROVED
A.01	21/01/25	PRELIMINARY CONCEPT PLAN FOR REVIEW	A.01	D.JEFFERS	M.FERRARO	J.ADEYEYE	S.VADAPALLI

CERTIFICATION CERTIFIER No.

DATE

CLIENT DOCUMENT NUMBER

REV

PRINT ALL COPIES IN COLOUR

BIPS BACKUP LV SUPPLY NEW STORM WATER PIPE EXISTING STORM WATER PIPE PROPOSED GAS PIPE ROUTE PROPOSED DIESEL BALANCING PIPE

LEGEND

1.

4.

8.

9.

1000

- GT UNIT AND AUXILIARIES EQUIPMENT
- 2. EMERGENCY DIESEL GENERATOR 3. MAIN LV ROOM
 - OFFICES
 - CARPARK
 - 30x12 SPARES SHED
- COMPRESSED AIR SHED/BUILDING 7 RAW & FIRE FIGHTING WATER TANK
 - DIESEL FUEL STORAGE
- DEMIN WATER TANK 10. WATER TREATMENT AREA
- 11. 12. STORMWATER POND
- 13. FUEL GAS BLOCK
- 14. FUEL GAS/LUBE OIL COOLER EXISTING BIPS GIS SWITCHROOM 15.
- DIESEL / LIQUID FUEL UNLOADING BAY 16.
- 17. FIN FAN COOLERS

DOCUMENT CODE

SCALE

1:400

DOCUMENT STATE WORK IN PROGRESS

5273	87-00	00-DRG-EE-000
	SIZE	
	A1	EE-0004

PROJECT BARKER INLET POWER STATION STAGE 2 (BIPS2) EXPANSION

2 X 9E 04 GENERAL ARRANGEMENT

REV	
A.01	

1	2	3	4	5	6	7	8	9	
-								,	
					N. WA				<u>NOTI</u> 1.
									EEU
			0.01m ²						^{S,No} 1 2 3 4
					51.5°m				
		Potential area for plats (transformers).		5. E	BIPS GIS Switchroom				
	<u>11</u> Vertica	al K Sun Nov 5 203	23	I Prove	ENet/BIPS 1 subst.	ation			A Rev.
GE Non-Public – (Class II) – NLR © COPYRIGHT 2023 General Elect									Pro Gro Dep Ress
All rights reserved. The information herein is by General Electric Company and/or its offil restricted and privileged use. All persons, or of its receipt to have contractually agreed modifications, disclosures, or use any portion General Electric Company and/or its legitimate of 1	s Proprietary and Technically Exclusive co- liates. Thus, it is being provided with the regal entities receiving this information to make no duplications, reproductions or on of this material; except as is expressly affiliates. 2	ntent that is solely owned explicit expectation of shall be deemed by the act f any nature by any means, y authorized in writing by 3	4	5	6	7	8	9	(

10				11				12	_				
									A				
				KI	EY PLAN				в				
l dime	INSIONS ARE	IN MM UNL	ESS OTHERWISE N	KOTED.									
VCE DO	CUMENTS :-												
	DRAWING N				GENERA			PRESS MAIN LINIT - REV. G	_				
ENT LIS	Т:- ,												
6) EXHAUST STACK					
3 1 CI	_							NSFORMERS STORAGE TANK	-				
3			CONTROL										
		UTTE			JUNE O		LIIOON	•	D				
	_												
									_				
									E				
	-												
									-				
									F				
	-												
		DAV	R. ARUL				ED E00		G				
/01/202 on Date													
ory otion Lat	est Revision :								-				
			CLEANCO,	AUSTRALIA									
ed		Name			Date			Signature	-				
		Scale	%			€	Document	Code	-				
dept.	_	Created by		Chec	ked by	٢	Approved	by Format AD	н				
	Originat	•	Document Type				Document	Status PRELIMINARY					
3	^{Originator} GE P	OWEF	Title, Subtitle	PLANT L	AYOUT		Identification 1659562	on number P-LM6000-B					
9	Gas Po System	wer s			5000 BIPS 2		Rev.	Date Lang. Sheet 20-10-2023 En 1/1	1				
10				11				12	_				

APPENDIX E TREE ASSESSMENT

5 May 2025 Our ref: 24ADL10154

AECOM Level 18, 91 King William Street Adelaide, Australia T 1800 868 654

Attention: Tom Hateley

Dear Tom,

Barkers Inlet Power Station Amenity Tree Assessment

This letter details the results of an Amenity Tree Assessment undertaken by Eco Logical Australia (ELA) of the additional clearing required for the proposed variations to the approved Barkers Inlet Power Station (BIPS) located on Torrens Island, South Australia (the study area) for AGL (Figure 1). The study area is approximately 0.16 hectares and is mapped within the Native Vegetation Exempt area in accordance with the *Native Vegetation Act 1991* (NV Act), as such the variations proposed to the approved BIPS project to accommodate the updated design of the stage 2 BIPS (referred to as BIPS 2) is not subject to assessment under this act. Furthermore, the study area is located within the Regulated and Significant Tree Overlay in accordance with the *Planning, Development and Infrastructure Act 2016* (PDI Act) and the SA Planning and Design Code (the Code). Within the Planning and Design Code, Part 10 makes declarations for the purposes of the definition of regulated trees and the definition of significant trees under the PDI Act. ELA understands that AGL is lodging a Crown development application to vary development approval DA 010/V067/17 (Development Approval) granted on 29 January 2018 for the BIPS so as to accommodate the updated design of BIPS 2. This letter assess the additional clearing proposed as part of the variation to the approved BIPS project (**Approved Project**).

The variations proposed to the Approved Project relevantly include updates to the route of the underground cabling and a substation expansion which cannot avoid impacting the Tree Protection Zone (TPZ) of regulated and significant trees owing to site constraints. As a result, the proposed variation to the Development Approval will be required to assess the removal of the impacted trees.

Field investigation and results

A field investigation was undertaken by ELA Ecologist Lauren Heddle on 23 December 2024 to assess the presence of amenity vegetation, Significant or Regulated Trees and other ecological features within the study area. The study area was devoid of remnant native vegetation but did contain a number or large planted amenity trees of mixed provenance. As the study area is within the Regulated and Significant Tree overlay, all trees were assessed using a handheld tablet and a corrected GNSS Surveyor which provided spatial accuracy (within 1 m) to delineate and record spatially the following data for each amenity tree:

- Location
- Photo
- Tree species
- Date/Time
- Tree height
- Circumference at 1 m above ground level. Trunk diameter for single and multi-trunked individuals.

The circumference measurements were used to calculate the total circumference (m and mm), largest circumference (for multi-stemmed individuals) (m), average circumference (for multi-stemmed individuals) (mm) and diameter (m). These measurements were used in accordance with the definitions for the identification of Regulated and Significant Trees to determine which (if any) are Significant or Regulated. The definitions are in accordance with the *Planning, Development and Infrastructure (General) Regulations 2017 – Regulation 3F*:

• Regulated Tree:

- a single trunk with a circumference of 1 metre or more when measured 1 metre above natural ground level.
- multiple trunks with a total circumference of 1 metre or more and an average circumference of 310 millimetres or more – when measured at 1 metre above natural ground level.

• Significant Tree:

- a single trunk with a circumference of 2 metres or more measured at a point 1 metre above natural ground level.
- multiple trunks with a total circumference of 2 metres or more and an average circumference of 625 millimetres or more when measured 1 metre above natural ground level.

The study area has previously been heavily cleared of native vegetation for construction and production of the AGL Power Station and as such only contains planted amenity trees and is devoid of native vegetation. The amenity trees recorded were in good condition and did not show signs of significant dieback.

A total of 43 individual amenity trees were recorded, all which are planted vegetation (Table 1, Table 2, Amenity trees recorded within the Study Area, Figure 2). Planted trees include *Casuarina glauca* (Swamp Sheoak), *Callistemon viminalis* (Weeping Bottlebrush) and *Melaleuca halmaturorum* (Swamp Paperbark). The understory stratum was dominated by exotic annual grasses.

One species recorded *Casuarina Glauca* (Swamp Oak) (Amenity Trees 1-22) is listed as a Declared Plant (Class 37) in South Australia under the LSA Act, see Appendix C:. Although some of these trees meet the size criteria for regulated trees (AT 18, AT19, AT20 & AT22) and significant trees (AT 4) as defined by the PDI Act, they are considered exempt from this declaration in accordance with 3F (4)-c of the *Planning, Development and Infrastructure (General) Regulations 2017* which states that:

- (4) Sub regulations (1) and (2) do not apply—
 - (c) to a tree belonging to a class of plants to which a declaration by the Minister under Part 9 Division 1 of the Landscape South Australia Act 2019 applies.

With the exclusion of *Casuarina glauca* individuals discussed earlier the study area was found to contain nine regulated trees (Table 1) that require application and approval by the Planning Commission following DA submission under the PDI Act.

The TPZ was calculated for each individual Amenity Tree and is the principal means for protecting trees on development sites (see Table 1, Amenity trees recorded within the Study Area and Figure 2). The TPZ is a combination of the root area and crown area requiring protection. It is an area isolated from construction disturbance, so that the tree remains viable. To calculate the TPZ for each Amenity Tree the largest trunk for multi-stemmed individuals was used, along with the Diameter at Breast Height (DBH). The following formula was used to calculate the TPZ as per Section 3 in *AS 4970-2009 Protection of Trees on Development Sites:* **TPZ = DBH x 12**.

The radius of the TPZ is calculated for each tree by multiplying its Diameter at Breast Height (DBH) x 12. Where DBH is the trunk diameter measured at 1.4 m above ground level (*AS 4970-2009*). As the proposed encroachment is greater than 10% of the TPZ, the project arborist must demonstrate that the trees would remain viable. The area lost to this encroachment should be compensated for elsewhere and contiguous with the TPZ. This may require root investigation by non-destructive methods (as per Clause 3.3.4 in *AS 4970-2009*). The average trunk circumference (Amenity trees recorded within the Study Area) was only calculated for Amenity Trees which were multi-stemmed and had a total circumference of above 1 m, as these individuals had the possibility of being Regulated or Significant (as per the definition above from *AS 4970-2009*).

All Regulated Trees identified within the study area are summarised in Table 1, with information for all Amenity Trees shown in Table 2, Amenity trees recorded within the Study Area.

Amenity Tree#	Species	Regulated or Significant	TPZ Radius	Photo	Latitude	Longitude
			(m)			
AT 31	Callistemon viminalis (Weeping Bottlebrush)	Y - Regulated	2.10	Plate 12	-34.806105	138.5257652
AT 32	Callistemon viminalis (Weeping Bottlebrush)	Y - Regulated	3.36	Plate 15	-34.806104	138.5258109
AT 33	Callistemon viminalis (Weeping Bottlebrush)	Y - Regulated	2.29	Plate 10	-34.806176	138.5258125
AT 34	Callistemon viminalis (Weeping Bottlebrush)	Y - Regulated	1.95	Plate 17	-34.806106	138.5256782
AT 35	Callistemon viminalis (Weeping Bottlebrush)	Y - Regulated	2.52	Plate 3	-34.806117	138.5256905
AT 36	Callistemon viminalis (Weeping Bottlebrush)	Y - Regulated	3.82	Plate 9	-34.806122	138.5256732
AT 37	Callistemon viminalis (Weeping Bottlebrush)	Y - Regulated	2.29	Plate 11	-34.806184	138.5258308
AT 38	Callistemon viminalis (Weeping Bottlebrush)	Y - Regulated	2.22	Plate 7	-34.80619	138.525821
AT 39	Callistemon viminalis (Weeping Bottlebrush)	Y - Regulated	3.02	Plate 1	-34.806185	138.5258219

Melaleuca halmaturorum (Swamp Paperbark) is native to South Australia (SA), Victoria (Vic) and Western Australia (WA), whereas *Casuarina glauca* (Swamp Sheoak) and *Callistemon viminalis* (Weeping Bottlebrush) are native to New South Wales (NSW) and *Callistemon viminalis* native to Queensland (QLD). However, all trees within the study area are planted which is evident by their linear row arrangement, proximity to the fence line and placement. Furthermore, the study area is outside the natural occurrence range for *Melaleuca halmaturorum* within SA which includes six major regions: Eyre Peninsula, Murray, Yorke Peninsula, Southern Lofty, Kangaroo Island and South-Eastern bioregions (Department of the Environment and Energy 2017). *Callistemon viminalis* (Weeping Bottlebrush) is a commonly cultivated species across SA, often used as a street tree or screening plant as it is extremely adaptable in cultivation and produces aesthetically pleasing red flowers. In the study area, it is likely to have been planted for amenity value and screening purposes. Within the study area it is evident that *Casuarina glauca* (Swamp Sheoak) has formed dense stands of trees due to their ability to sucker from their roots. This species has been widely planted across SA and is often cultivated as a street tree, to stabilise soil and across the agricultural zone for farm windbreaks and shelter. In the study area, it is likely to have been planted for amenity value and screening purposes.

Casuarina glauca is a declared species under the *Landscape South Australia Act 2019* (LSA Act) and was recorded within the study area. This species includes several biosecurity duties under the LSA Act for landowners within Green Adelaide Landscape Board region, comprising the following:

- Prohibited entry into the area
- Prohibited movement on public roads
- Prohibited sale of the plant
- Land owners to control the plant on their properties
- Recovery of control costs on adjoining road reserves

Discussion

The study area does not contain remnant native vegetation, nor does it warrant further assessment under the NV Act. The field investigation recorded nine regulated trees within the study area that will need to be assessed under DA.

The field investigation did not identify habitat for rated species or areas with high biodiversity value, therefore the proposed development will not result in impacts to native vegetation or threatened biota or their habitats.

High importance should be applied to *Casuarina glauca* (Swamp Sheoak), due to current size within and extending slightly outside the study area along the western roadside. ELA recommends complying with the LSA Act recommendations. As the LSA Act states that the movement of *Casuarina glauca* is prohibited on public roads, if the removal of this species is required it would be best to do so in two stages. ELA recommends this is completed by:

- Treating trees with an appropriate herbicide such as triclopyr (600g/L). Larger trees to be drilled and filled and smaller trees to be cut and swabbed.
- Removing dead trees offsite to a licenced green waste facility <u>six to eight weeks after</u> <u>treatment. The six to eight week holding period ensures tree and root mass has died ensuring</u> the patch can be felled and removed from site safely. The Green Adelaide Landscape Board does not provide any specific guidance on the allowed timelines for the removal of dead plant

material following poisoning. This advice was obtained from a Notice-of-Works for the *City of Marion* 2023 for a similar project removing *Casuarina glauca*.

If the removal of *Casuarina glauca* trees is not required for construction, ELA recommends these trees are managed to prevent further spread by following LSA Act recommendations of using herbicide such as triclopyr on suckers which can re-grow. This will require repeat control treatments.

Recommendations

The following recommendations have been made regarding the potential removal of planted amenity vegetation within the study area for the variations to the Approved Project:

- Assess updated project footprint and design to reduce and minimise potential impacts to regulated and significant trees.
- Seek approval for impacts to Regulated and significant trees as part of the proposed variation to the Development Approval under the PDI Act.

Following approval, the below may apply:

- Where excavation works occur for the proposed vegetation clearance and construction, root location and distribution should be identified through non-destructive investigation methods (pneumatic, hydraulic, hand digging etc) to minimise potential root impacts on trees being retained.
- Treat all state declared species with high importance on *Casuarina glauca* (Swamp Sheoak) recorded within the study area and in the area just outside along the roadside with herbicide and manual removal techniques, prior to construction. This process will require repeat treatments of suckering stems as this species will continue to sucker and spread if not controlled.

Regards,

Lauren Heddle Ecologist

Appendix A: Amenity trees recorded within the Study Area

Table 2 Amenity	Trees recorded	within the Study Area
-----------------	----------------	-----------------------

Amenity Tree#	Species	Height	DBH	Circumference (m)	Total circumfe	Largest circumfe	Average circumference	Regulated or	TPZ Radius	Photo	Latitude	Longitude
		(m)	(m)	· · /	rence (m)	rence (m)	(mm) (multi- stemmed individuals)	Significant	(m)			
AT 1	<i>Casuarina glauca</i> (Swamp Sheoak)	5	0.08	0.2, 0.25	0.45	0.25	Not calculated	Ν	0.95	Plate 27	-34.805517	138.524997 8
AT 2	<i>Casuarina glauca</i> (Swamp Sheoak)	4	0.08	0.25	0.25	0.25	-	Ν	0.95	Plate 27	-34.805495	138.524964 3
AT 3	<i>Casuarina glauca</i> (Swamp Sheoak)	4	0.16	0.1, 0.51	0.61	0.51	Not calculated	Ν	1.95	Plate 27	-34.805535	138.525022 3
AT 4	<i>Casuarina glauca</i> (Swamp Sheoak)	4	0.07	0.21	0.21	0.21	-	Ν	0.80	Plate 22	-34.805568	138.525067 8
AT 5	<i>Casuarina glauca</i> (Swamp Sheoak)	4	0.10	0.32	0.32	0.32	-	Ν	1.22	Plate 22	-34.805595	138.525117 7

Amenity Tree#	Species	Height (m)	DBH (m)	Circumference (m)	Total circumfe rence (m)	Largest circumfe rence (m)	Average circumference (mm) (multi- stemmed individuals)	Regulated or Significant	TPZ Radius (m)	Photo	Latitude	Longitude
AT 6	<i>Casuarina glauca</i> (Swamp Sheoak)	4	0.06	0.2	0.2	0.2	-	Ν	0.76	Plate 22	-34.805632	138.525173 1
AT 7	<i>Casuarina glauca</i> (Swamp Sheoak)	5	0.10	0.3	0.3	0.3	-	Ν	1.15	Plate 27	-34.805667	138.525227 3
AT 8	<i>Casuarina glauca</i> (Swamp Sheoak)	4	0.15	0.46	0.46	0.46		Ν	1.76	Plate 25	-34.805688	138.525263 8
AT 9	<i>Casuarina glauca</i> (Swamp Sheoak)	5	0.14	0.45	0.45	0.45	-	Ν	1.72	Plate 24	-34.805705	138.525290 7
AT 10	<i>Casuarina glauca</i> (Swamp Sheoak)	5	0.16	0.31, 0.51	0.82	0.51	Not calculated	Ν	1.95	Plate 24	-34.805724	138.525324 5
AT 11	<i>Casuarina glauca</i> (Swamp Sheoak)	5	0.22	0.7	0.7	0.7	-	Ν	2.67	Plate 24	-34.805738	138.525345 2

Amenity Tree#	Species	Height (m)	t DBH (m)	(m)	Total circumfe rence	Largest circumfe rence	Average circumference (mm) (multi-	Regulated or Significant	TPZ Radius	Photo	Latitude	Longitude
					(m)	(m)	stemmed individuals)		(m)			
AT 12	<i>Casuarina glauca</i> (Swamp Sheoak)	5	0.11	0.35	0.35	0.35	-	Ν	1.34	Plate 24	-34.805752	138.52537
AT 13	<i>Casuarina glauca</i> (Swamp Sheoak)	3	0.16	0.5	0.5	0.5	-	Ν	1.91	Plate 20	-34.805757	138.525404 6
AT 14	<i>Casuarina glauca</i> (Swamp Sheoak)	4	0.14	0.45	0.45	0.45	-	Ν	1.72	Plate 22	-34.805772	138.525438 8
AT 15	<i>Casuarina glauca</i> (Swamp Sheoak)	5	0.10	0.31	0.31	0.31	-	Ν	1.18	Plate 23	-34.805829	138.525521 1
AT 16	<i>Casuarina glauca</i> (Swamp Sheoak)	4	0.08	0.25	0.25	0.25	-	Ν	0.95	Plate 27	-34.805862	138.525582 1
AT 17	<i>Casuarina glauca</i> (Swamp Sheoak)	5	0.09	0.29	0.29	0.29	-	Ν	1.11	Plate 27	-34.805886	138.525622 4

Amenity Tree#	Species	Height (m)	DBH (m)	(m)	Total circumfe rence	Largest circumfe rence	Average circumference (mm) (multi-	Regulated or Significant	TPZ Radius	Photo	Latitude	Longitude
					(m)	(m)	stemmed individuals)	Significant	(m)			
AT 18	<i>Casuarina glauca</i> (Swamp Sheoak)	5	0.32	1, 0.3	1.3	1	650	N – AT (Regulated – Exempt)	3.82	Plate 24	-34.805964	138.525748 7
AT 19	<i>Casuarina glauca</i> (Swamp Sheoak)	4	0.19	0.47, 0.6	1.07	0.6	535	N – AT (Regulated – Exempt)	2.29	Plate 19	-34.806054	138.525890 5
AT 20	<i>Casuarina glauca</i> (Swamp Sheoak)	5	0.35	1.1	1.1	1.1	-	N – AT (Regulated – Exempt)	4.20	Plate 21	-34.806033	138.525868
AT 21	<i>Casuarina glauca</i> (Swamp Sheoak)	4	0.68	2.15	2.15	2.15	-	N – AT (Significant – Exempt)	8.21	Plate 28	-34.806088	138.525875 8
AT 22	<i>Casuarina glauca</i> (Swamp Sheoak)	5	0.18	0.54, 0.55	1.09	0.55	545	N – AT (Regulated – Exempt)	2.10	Plate 23	-34.806079	138.525858 5
AT 23	Callistemon viminalis (Weeping Bottlebrush)	3	0.16	0.21, 0.51	0.72	0.51	-	Ν	1.95	Plate 4	-34.806092	138.525849 6
Amenity Tree#		Height (m)	DBH (m)	Circumference (m)	Total circumfe rence	Largest circumfe rence	Average circumference (mm) (multi-	Regulated or Significant	TPZ Radius	Photo	Latitude	Longitude
------------------	--	---------------	------------	-------------------------------------	----------------------------	------------------------------	--	--------------------------------	---------------	----------	------------	-----------------
					(m)	(m)	stemmed individuals)	olgimeant	(m)			
AT 24	Callistemon viminalis (Weeping Bottlebrush)	3	0.13	0.12, 0.35, 0.42, 0.3, 0.19	1.38	0.42	276	Ν	1.60	Plate 16	-34.806096	138.525858 5
AT 25	Callistemon viminalis (Weeping Bottlebrush)	3	0.10	0.3, 0.3, 0.21, 0.25, 0.25, 0.25	1.56	0.3	260	Ν	1.15	Plate 13	-34.806102	138.525851 9
AT 26	Callistemon viminalis (Weeping Bottlebrush)	3	0.09	0.26, 0.2, 0.27	0.73	0.27	Not calculated	Ν	1.03	Plate 14	-34.806134	138.525826 9
AT 27	Callistemon viminalis (Weeping Bottlebrush)	3	0.11	0.36, 0.31	0.67	0.36	Not calculated	Ν	1.38	Plate 5	-34.806129	138.525830 8
AT 28	Callistemon viminalis (Weeping Bottlebrush)	3	0.11	0.22, 0.34, 0.19, 0.28	1.03	0.34	257.5	Ν	1.30	Plate 6	-34.806113	138.525763 6
AT 29	Callistemon viminalis (Weeping Bottlebrush)	3	0.12	0.37	0.37	0.37	-	Ν	1.41	Plate 8	-34.806097	138.525789

Amenity Tree#	Species	Height (m)	DBH (m)	Circumference (m)	Total circumfe rence (m)	Largest circumfe rence (m)	Average circumference (mm) (multi- stemmed individuals)	Regulated or Significant	TPZ Radius (m)	Photo	Latitude	Longitude
AT 30	Callistemon viminalis (Weeping Bottlebrush)	2	0.03	0.1	0.1	0.1	-	Ν	0.38	Plate 2	-34.806092	138.525768 1
AT 31	Callistemon viminalis (Weeping Bottlebrush)	3	0.18	0.55, 0.25, 0.23, 0.41, 0.4	1.84	0.55	368	Y - Regulated	2.10	Plate 12	-34.806105	138.525765 2
AT 32	Callistemon viminalis (Weeping Bottlebrush)	3	0.28	0.32, 0.52, 0.88, 0.2	1.92	0.88	480	Y - Regulated	3.36	Plate 15	-34.806104	138.525810 9
AT 33	Callistemon viminalis (Weeping Bottlebrush)	3.5	0.19	0.26, 0.41, 0.6, 0.32	1.59	0.6	397.5	Y - Regulated	2.29	Plate 10	-34.806176	138.525812 5
AT 34	Callistemon viminalis (Weeping Bottlebrush)	3	0.16	0.31, 0.21, 0.51, 0.26	1.29	0.51	322.5	Y - Regulated	1.95	Plate 17	-34.806106	138.525678 2
AT 35	Callistemon viminalis (Weeping Bottlebrush)	3	0.21	0.66, 0.33, 0.50, 0.36	1.85	0.66	462.5	Y - Regulated	2.52	Plate 3	-34.806117	138.525690 5

Amenity Tree#	Species	Height (m)	DBH (m)	Circumference (m)	Total circumfe rence (m)	Largest circumfe rence (m)	Average circumference (mm) (multi- stemmed individuals)	Regulated or Significant	TPZ Radius (m)	Photo	Latitude	Longitude
AT 36	Callistemon viminalis (Weeping Bottlebrush)	3.5	0.32	1, 0.45	1.45	1	725	Y - Regulated	3.82	Plate 9	-34.806122	138.525673 2
AT 37	Callistemon viminalis (Weeping Bottlebrush)	3.5	0.19	0.52, 0.32, 0.6	1.44	0.6	480	Y - Regulated	2.29	Plate 11	-34.806184	138.525830 8
AT 38	Callistemon viminalis (Weeping Bottlebrush)	3	0.18	0.44, 0.29, 0.58, 0.13	1.44	0.58	360	Y - Regulated	2.22	Plate 7	-34.80619	138.525821
AT 39	Callistemon viminalis (Weeping Bottlebrush)	3	0.25	0.79, 0.37, 0.10, 0.52	1.78	0.79	445	Y - Regulated	3.02	Plate 1	-34.806185	138.525821 9
AT 40	<i>Melaleuca halmaturoru m</i> (Swamp Paperbark)	3	0.10	0.17, 0.09, 0.28, 0.25, 0.4, 0.22, 0.1, 0.32, 0.22	2.05	0.32	228	Ν	1.22	Plate 26	-34.806179	138.525830 7
AT 41	<i>Melaleuca halmaturoru m</i> (Swamp Paperbark)	2	0.07	0.05, 0.05, 0.22, 0.05, 0.21, 0.15, 0.2	0.93	0.22	Not calculated	Ν	0.84	Plate 18	-34.806188	138.525827 7

Amenity Tree#	Species	Height (m)	DBH (m)	Circumference (m)	Total circumfe rence (m)	Largest circumfe rence (m)	Average circumference (mm) (multi- stemmed individuals)	Regulated or Significant	TPZ Radius (m)	Photo	Latitude	Longitude
AT 42	<i>Melaleuca halmaturoru m</i> (Swamp Paperbark)	3	0.10	0.32, 0.1, 0.25, 0.24, 0.05, 0.31	1.27	0.32	212	Ν	1.22	Plate 26	-34.806177	138.525826 8
AT 43	<i>Melaleuca halmaturoru m</i> (Swamp Paperbark)	3	0.10	0.05, 0.05, 0.3	0.4	0.3	-	Ν	1.15	Plate 26	-34.806201	138.525785 1

Appendix B: Photo Plates of Amenity trees

Plate 1

AT 39 *Callistemon viminalis* (Weeping Bottlebrush). Regulated Tree.

Plate 2 AT 30 Callistemon viminalis (Weeping Bottlebrush).

Plate 3

AT 35 *Callistemon viminalis* (Weeping Bottlebrush). Regulated Tree.

Plate 5 AT 27 Callistemon viminalis (Weeping Bottlebrush).

Plate 4

AT 23 Callistemon viminalis (Weeping Bottlebrush).

Plate 6 AT 28 Callistemon viminalis (Weeping Bottlebrush).

Plate 7

AT 38 *Callistemon viminalis* (Weeping Bottlebrush). Regulated Tree.

Plate 9

Callistemon viminalis (Weeping Bottlebrush). Regulated Tree.

AT 37 *Callistemon viminalis* (Weeping Bottlebrush). Regulated Tree.

Plate 8 AT 29 Callistemon viminalis (Weeping Bottlebrush).

Plate 10

AT 33 *Callistemon viminalis* (Weeping Bottlebrush). Regulated Tree.

AT 31 *Callistemon viminalis* (Weeping Bottlebrush). Regulated Tree.

Plate 13

AT 25 Callistemon viminalis (Weeping Bottlebrush).

Plate 15

AT 32 *Callistemon viminalis* (Weeping Bottlebrush). Regulated Tree.

Plate 17

AT 34 *Callistemon viminalis* (Weeping Bottlebrush). Regulated Tree.

Plate 14

26 Callistemon viminalis (Weeping Bottlebrush).

Plate 16

AT 24 Callistemon viminalis (Weeping Bottlebrush).

Plate 18 AT 41 Melaleuca halmaturorum (Swamp Paperbark).

Plate 19

AT 19 Casuarina glauca (Swamp Sheoak). Regulated tree - Exempt.

Plate 21

AT 20 Casuarina glauca (Swamp Sheoak). Regulated tree - Exempt.

AT 15, 22 *Casuarina glauca* (Swamp Sheoak). AT 22 is a Regulated tree - Exempt.

Plate 20 AT 13 Casuarina glauca (Swamp Sheoak).

Plate 22 AT 4, 5, 6, 14 *Casuarina glauca* (Swamp Sheoak).

AT 9, 10, 11, 12, 18 *Casuarina glauca* (Swamp Sheoak). AT 18 is a Regulated tree - Exempt.

Plate 25

Plate 27 AT 1, 2, 3, 7, 16, 17 Casuarina glauca (Swamp Sheoak).

AT 40, 42, 43 Melaleuca halmaturorum (Swamp Paperbark).

Plate 28

AT 21 Casuarina glauca (Swamp Sheoak). Significant Tree -Exempt.

Appendix C: Landscape South Australia act 2019 - List of Declared Plants

LANDSCAPE SOUTH AUSTRALIA ACT 2019

List of Declared Plants

PURSUANT to section 185(1) of the Landscape South Australia Act 2019 (the Act), I, David Speirs MP, Minister for Environment and Water, declare provisions of the Act apply to specified plants in specified declared areas as follows:

Plants	Provisions of Act Which are to Apply	Category	Declared Area
CLASS 1			
Alternanthera pungens khaki weed	186(1)(2), 188(1)(2), 190(1)(2)(3), 192(1), 194	1	The whole of the State.
Alternanthera philoxeroides alligator weed			
Amelichloa brachychaeta espartillo			
<i>Amelichloa caudata</i> broad-kernel espartillo			
<i>Cortaderia richardii</i> toe toe			
Cuscuta campestris golden dodder			
<i>Cuscuta planiflora</i> red dodder			
<i>Cuscuta suaveolens</i> Chilean dodder			
<i>Cuscuta</i> , all non-native species not specifically referred to in this schedule dodders			
<i>Equisetum</i> spp. horsetails (excluding dead shoots)			
<i>Gymnocoronis spilanthoides</i> Senegal tea plant			
<i>Jarava plumosa</i> plumerillo			
<i>Ludwigia peruviana</i> primrose willow			
Nassella hyalina cane needlegrass			
Nassella tenuissima Mexican feathergrass			
Nassella trichotoma serrated tussock			
Orobanche spp. (excluding Orobanche cernua var. australiana, Orobanche minor and Orobanche ramosa) broomrapes			
Parkinsonia aculeata parkinsonia			
Parthenium hysterophorus parthenium weed			
Prosopis spp. mesquite (excluding seasoned dry timber)			

Plants	Provisions of Act Which	Category	Declared Area
Ranunculus sceleratus poison buttercup	are to Apply		
Rubus laudatus			
Bundy blackberry Sagittaria montevidensis			
giant arrowhead			
CLASS 2			
Cabomba caroliniana cabomba	186(1)(2), 188(1)(2), 190(1)(2)(3), 192(1)	1	The whole of the State.
<i>Egeria densa</i> leafy elodea			
Eichhornia crassipes water hyacinth			
Elodea canadensis elodea			
Hydrocotyle ranunculoides hydrocotyle			
Lagarosiphon major lagarosiphon			
<i>Myriophyllum spicatum</i> Eurasian water-milfoil			
Sagittaria platyphylla sagittaria, arrowhead			
Salvinia spp. salvinia			
Stratiotes aloides water soldier			
Trapa natans water caltrop			
CLASS 3			
Orobanche ramosa branched broomrape	186(1)(2), 188(1)(2), 190(1)(2)(3), 194	1	The whole of the State.
	192(1) 192(2)		The areas of the, Alinytjara Wilurara, Eyre Peninsula, Green Adelaide, Hills and Fleurieu, Kangaroo Island, Northern and Yorke, South Australian Arid Lands and Limestone Coast Regions.
			The area of the Murraylands and Riverland Region.

Plants	Provisions of Act Which are to Apply	Category	Declared Area
CLASS 4			
Nassella leucotricha Texas needlegrass	186(1)(2), 188(1)(2), 190(1)(2)(3), 192(1), 194	1	The whole of the State.
Nassella neesiana Chilean needlegrass	186(3)		The areas of the Green Adelaide, Hills and Fleurieu, and Murraylands and Riverland Regions.
CLASS 5			
<i>Malvella leprosa</i> alkali sida	186(1)(2), 188(1)(2), 192(1), 194	1	The whole of the State.
	190(1)(2)(3)		The areas of the Alinytjara Wilurara, Green Adelaide, Hills and Fleurieu, Kangaroo Island, Northern and Yorke, South Australian Arid Lands, Murraylands and Riverland and Limestone Coast Regions.
CLASS 6			
Cirsium arvense perennial thistle	186(1)(2), 188(1)(2)	1	The whole of the State
Senecio jacobaea ragwort	190(1)(2)(3)		The areas of the Green Adelaide, Hills and Fleurieu, Kangaroo Island, Northern and Yorke, Murraylands and Riverland and Limestone Coast Regions.
	192(1), 194		The areas of the Eyre Peninsula, Green Adelaide, Hills and Fleurieu, Kangaroo Island, Northern and Yorke, Murraylands and Riverland and Limestone Coast Regions.
CLASS 7			
Vachellia nilotica subsp. indica prickly acacia	186(1)(2), 188(1)(2), 190(1)(2)(3)	1	The whole of the State.
	192 (1)		The areas of the Alinytjara Wilurara and South Australian Arid Lands Regions.
CLASS 8			
Orobanche minor clover broomrape	186(1)(2), 188(1)(2)	1	The whole of the State.
CLASS 9			
Bassia scoparia (excluding the cultivar 'Trichophylla') kochia	186(1)(2), 188(1)(2), 192(1), 194	2	The whole of the State.

Plants	Provisions of Act Which are to Apply	Category	Declared Area
CLASS 10			
Senecio madagascariensis fireweed	186(1)(2), 188(1)(2)	2	The whole of the State.
	192(1), 194		The areas of the Eyre Peninsula, Green Adelaide, Hills and Fleurieu, Kangaroo Island, Northern and Yorke, Murraylands and Riverland and Limestone Coast Regions.
CLASS 11			
Chorispora tenella blue mustard	186(1)(2), 188(1)(2), 190(1)(2)(3), 192(2), 194	2	The whole of the State.
<i>Cortaderia</i> (all species except <i>Cortaderia richardii)</i> pampas grasses			
CLASS 12			
Hyparrhenia hirta Coolatai grass	186(2), 188(1)(2), 190(1)(2)(3), 192(2), 194	2	The whole of the State.
CLASS 13			
Solanum elaeagnifolium silverleaf nightshade	186(2), 188(1)(2), 192(2), 194	2	The whole of the State.
	190(1)		The area of the Limestone Coast Region.
CLASS 14			
Rhaponticum repens creeping knapweed	186(2), 188(1)(2), 192(2), 194	2	The whole of the State.
	190(1)		The areas of the Green Adelaide, Hills and Fleurieu, Kangaroo Island, Northern and Yorke, Murraylands and Riverland and Limestone Coast Regions.
CLASS 15			
Xanthium strumarium Noogoora burr complex	186(1)(2), 188(1)(2), 192(2), 194	2	The whole of the State.
	190(1)		The area of the South Australian Arid Lands Region.

CLASS 16				
<i>Peganum harmala</i> African rue	186(2), 188(1)(2), 192(2), 194	2	The whole of the State.	

Plants	Provisions of Act Which are to Apply	Category	Declared Area
	190(1)		The areas of the South Australian Arid Lands and Murraylands and Riverland Regions.
CLASS 17			
<i>Cenchrus ciliaris</i> and <i>Cenchrus pennisetiformis</i> buffel grass	186(1)(2), 188(1)(2), 194	2	The whole of the State.
	190(1)(2)(3)		The areas of the Green Adelaide, Hills and Fleurieu, Kangaroo Island, Murraylands and Riverland, and Limestone Coast Regions.
	192(1)		The areas of the Eyre Peninsula, Green Adelaide, Hills and Fleurieu, Kangaroo Island, Murraylands and Riverland, and Limestone Coast Regions.
	192(2)		The areas of the Alinytjara Wilurara, Northern and Yorke, and South Australian Arid Lands Regions.
CLASS 18			
Chrysanthemoides monilifera boneseed	186(1)(2), 188(1)(2), 192(2), 194	2	The whole of the State.
<i>Cylindropuntia</i> spp. cholla, Hudson pear and rope cactus			
<i>Opuntia</i> spp. (excluding spineless <i>Opuntia ficus-indica</i>) and <i>Tephrocactus</i> spp. prickly pear			
<i>Polygala myrtifolia</i> polygala			

Plants	Provisions of Act Which are to Apply	Category	Declared Area
CLASS 19			
Ambrosia spp. perennial ragweed	186(2), 188(1)(2), 192(2), 194	2	The whole of the State.
Asparagus asparagoides bridal creeper			
<i>Asparagus declinatus</i> bridal veil			
Cenchrus longispinus and Cenchrus spinifex innocent weed			
<i>Chondrilla juncea</i> skeleton weed			
Lycium ferocissimum African boxthorn			
Oncosiphon suffruticosum Calomba daisy			
Reseda lutea cutleaf mignonette			
Silene vulgaris bladder campion			
Tribulus terrestris caltrop			
<i>Ulex europaeus</i> gorse; furze			
Xanthium spinosum Bathurst burr			
CLASS 20			
Asparagus scandens asparagus fern	186(1)(2), 188(1)(2)	2	The whole of the State.
	192(2), 194		The areas of the Eyre Peninsula, Green Adelaide, Hills and Fleurieu, Murraylands and Riverland and Limestone Coast Regions.
CLASS 21			
<i>Lepidium draba</i> hoary cress	186(2), 188(1)(2),	2	The whole of the State.
<i>Moraea flaccida</i> one-leaf Cape tulip <i>Moraea miniata</i> two-leaf Cape tulip	192(2), 194		The area of the Alinytjara Wilurara, Eyre Peninsula, Green Adelaide, Hills and Fleurieu, Kangaroo Island, Northern and Yorke, Murraylands and Riverland, and Limestone Coast Regions.

Plants	Provisions of Act Which are to Apply	Category	Declared Area
CLASS 22			
Allium vineale field garlic	186(2), 188(1)(2)	2	The whole of the State.
	192(2)		The areas of the Eyre Peninsula, Green Adelaide, Hills and Fleurieu, Kangaroo Island, Northern and Yorke, Murraylands and Riverland, and Limestone Coast Regions.
	194		The areas of the Green Adelaide, Hills and Fleurieu, Kangaroo Island, Northern and Yorke, Murraylands and Riverland, and Limestone Coast Regions.
CLASS 23			
Rubus fruticosus sp. agg. blackberry excluding a) any detached fruit b) the following cultivars when planted and maintained for domestic or commercial purposes under conditions approved by the Minister: i. 'Black Satin' ii. 'Dirksen Thornless' iii. 'Smoothstem' iv. 'Thornfree' v. 'Loch Ness' vi. 'Chester Thornless'	186(1)(2), 188(1)(2) 192(2), 194	2	The whole of the State. The areas of the Eyre Peninsula, Green Adelaide, Hills and Fleurieu, Kangaroo Island, Northern and Yorke, Murraylands and Riverland, and Limestone Coast Regions.
CLASS 24			
<i>Rosa canina</i> dog rose	186(2), 188(1)(2)	2	The whole of the State.
	192(2), 194		The areas of the Green Adelaide, Hills and Fleurieu, Northern and Yorke, Murraylands and Riverland, and Limestone Coast Regions.
CLASS 25			
<i>Rosa rubiginosa</i> sweet briar	186(2), 188(1)(2)	2	The whole of the State.
	192(2), 194		The areas of the Green Adelaide, Hills and Fleurieu, Murraylands and Riverland, and Limestone Coast Regions.

Plants	Provisions of Act Which are to Apply	Category	Declared Area	
CLASS 26				
Amsinckia spp. yellow burrweed	186(2), 188(1)(2)	2	The whole of the State.	
Diplotaxis tenuifolia Lincoln weed (excluding plants grown as a commercial crop or in domestic vegetable gardens, and leaves or shoots harvested as a vegetable)	192(2), 194		The areas of the Eyre Peninsula, Green Adelaide, Hills and Fleurieu, Kangaroo Island, Northern and Yorke, Murraylands and	
<i>Genista linifolia</i> flax-leaf broom			Riverland, and Limestone Coast Regions.	
Genista monspessulana Cape broom; Montpellier broom				
CLASS 27				
<i>Olea europaea</i> olive (not planted, used and maintained for domestic, public amenity or commercial purposes)	192(2)(3), 194	2	The whole of the State.	
CLASS 28				
Anredera cordifolia Madeira vine	186(1)(2), 188(1)(2)	2	The whole of the State.	
Asparagus aethiopicus ground asparagus (excluding the cultivar 'Myersii')				
Asparagus africanus ornamental asparagus				
Asparagus plumosus climbing asparagus fern				
<i>Distichlis spicata</i> 'Nypa Reclamation' and any cultivars of <i>Distichlis spicata</i> consisting of lines that include seedbearing individuals. distichlis				
Dolichandra unguis-cati cats claw creeper				
Hieracium aurantiacum orange hawkweed				
CLASS 29				
Austrocylindropuntia spp.	188(1)	2	The whole of the State.	
CLASS 30				
<i>Toxicodendron succedaneum</i> rhus tree	186(1)(2), 188(1)(2), 192(1)	3	The whole of the State.	
CLASS 31				
<i>Toxicodendron radicans</i> poison ivy	186(1)(2), 188(1)(2), 190(1)(2)(3), 192(1)	3	The whole of the State.	
CLASS 32				

Plants	Provisions of Act Which are to Apply	Category	Declared Area
<i>Oenanthe pimpinelloides</i> water-dropwort	186(2), 188(1)(2), 192(2), 194 190(1)(2)(3)	3	The whole of the State. The areas of the Green Adelaide, Hills and Fleurieu, Kangaroo Island, Northern and Yorke, Murraylands and Riverland, and Limestone Coast Regions.
CLASS 33			
<i>Trachyandra divaricata</i> dune onionweed	186(2), 188(1)(2) 192(1), 194	3	The whole of the State. The area of the Green Adelaide and Hills and
			Fleurieu Regions.
CLASS 34			
<i>Eragrostis curvula</i> (excluding the cultivar 'Consol') African lovegrass	186(2), 188(1)(2), 192(2), 194	3	The whole of the State.
CLASS 35			
Crataegus monogyna may; hawthorn	186(2), 188(1)(2)	3	The whole of the State.
	192(2), 194		The areas of the Green Adelaide, Hills and Fleurieu and Kangaroo Island Regions.
CLASS 36			
Crataegus sinaica azarola	186(2), 188(1)(2)	3	The whole of the State.
	192(2), 194		The areas of the Green Adelaide, Hills and Fleurieu and Limestone Coast Regions.
CLASS 37			
Casuarina glauca and Casuarina obesa swamp oak	186(1)(2), 188(1)	3	The whole of the State.
excluding the cultivars: 'CAS01' (marketed as Free Fall TM) 'Cousin It'	192(2), 194		The area of the Green Adelaide and Hills and Fleurieu Regions.
CLASS 38			
<i>Marrubium vulgare</i> horehound	186(2), 188(1)(2) 192(2), 194	3	The whole of the State. The areas of the Alinytjara Wilurara, Eyre Peninsula, Kangaroo Island, Northern and Yorke, Murraylands and Riverland, and Limestone Coast Regions.

Plants	Provisions of Act Which are to Apply	Category	Declared Area
CT 4 55 20			
CLASS 39 Emex australis	186(1)(2), 188(1)(2)	3	The whole of the State.
three-corner jack	192(2), 194		The areas of the Alinytjara Wilurara, Eyre Peninsula, Kangaroo Island, Murraylands and Riverland, and Limestone Coast Regions.
CLASS 40			
Echium plantagineum	186(2), 188(1)(2)	3	The whole of the State.
salvation Jane	190(1)		The area of the Kangaroo Island Region.
	192(2)		The areas of the Alinytjara Wilurara, Green Adelaide, Hills and Fleurieu, Kangaroo Island, Murraylands and Riverland, and Limestone Coast Regions.
	194		The areas of the Green Adelaide, Hills and Fleurieu, Kangaroo Island, Murraylands and Riverland, and Limestone Coast Regions.
CLASS 41			
<i>Cynara cardunculus</i> wild artichoke (excluding plants grown as a commercial crop or in	186(2), 188(1)(2)	3	The whole of the State.
domestic vegetable gardens, and artichokes harvested for use as a vegetable)	192(2), 194		The areas of the Green Adelaide, Hills and Fleurieu, Kangaroo Island and Northern and Yorke Regions.
CLASS 42			
Orbea variegata carrion flower	186(1)(2), 188(1)(2)	3	The whole of the State.
	192(2)		The areas of the Alinytjara Wilurara and Eyre Peninsula Regions.
CLASS 43			
Cenchrus setaceus fountain grass	186(1)(2), 188(1)(2)	3	The whole of the State.
	192(2), 194		The areas of the Alinytjara Wilurara, Eyre Peninsula, Green Adelaide, Hills and Fleurieu, Murraylands and Riverland, and Limestone Coast Regions.

Plants	Provisions of Act Which are to Apply	Category	Declared Area
CLASS 44			
Cenchrus macrourus African feathergrass	186(2), 188(1)(2)	3	The whole of the State.
	192(2), 194		The areas of the Eyre Peninsula, Green Adelaide, Hills and Fleurieu, Kangaroo Island, Northern and Yorke, Murraylands and Riverland, and Limestone Coast Regions.
CLASS 45			
<i>Cytisus scoparius</i> English broom; Scotch broom	186(2), 188(1)(2)	3	The whole of the State.
	190(1)		The area of the Kangaroo Island Region.
	192(2). 194		The areas of the Eyre Peninsula, Green Adelaide, Hills and Fleurieu, Kangaroo Island, Northern and Yorke, Murraylands and Riverland, and Limestone Coast Regions.
CLASS 46			
Euphorbia terracina false caper	186(2), 188(1)(2)	3	The whole of the State.
<i>Solanum linnaeanum</i> apple-of-Sodom	192(2), 194		The areas of the Green Adelaide, Hills and Fleurieu, and Limestone Coast Regions.
CLASS 47			
Pinus halepensis Aleppo pine (not planted and maintained for amenity or	186(2), 188(1)	2	The whole of the State.
commercial purposes)	192(2), 194		The areas of the Eyre Peninsula, Green Adelaide, Hills and Fleurieu, Kangaroo Island, Northern and Yorke, Murraylands and Riverland, and Limestone Coast Regions.
CLASS 48			
Convolvulus arvensis field bindweed	186(2), 188(1)(2)	3	The whole of the State.
Cyperus rotundus nutgrass	192(1), 194		The area of any land in the State used for the extraction or removal of soil, loam, sand or gravel.

Plants	Provisions of Act Which are to Apply	Category	Declared Area
CLASS 49			
<i>Tamarix parviflora</i> and <i>Tamarix ramosissima</i> tamarisks	186(2), 188(1)(2) 192(2), 194	3	The whole of the State. The areas of the Northern and Yorke, South Australian Arid Lands and Murraylands and Riverland Regions.
CLASS 50			
<i>Tamarix aphylla</i> athel pine	186(2),188(1)(2) 192 (2), 194	3	The whole of the State. The areas of any lands within 100 metres of a watercourse in the whole of the State.
CLASS 51			
<i>Watsonia meriana</i> var. <i>bulbillifera</i> bulbil watsonia	186(2), 188(1)(2) 192(2), 194	3	The whole of the State. The areas of the Green Adelaide, Hills and Fleurieu, Kangaroo Island, and Limestone Coast Regions.
CLASS 52			
Allium triquetrum three-cornered garlic	186(2), 188(1)(2)	3	The whole of the State.
<i>Erica arborea</i> tree heath	192(2), 194		The area of the Green Adelaide and Hills and Fleurieu Regions.
CLASS 53			
<i>Leptospermum laevigatum</i> coastal tea-tree excluding the cultivars 'Fore Shore' and 'Shore Tuff' <i>Silybum marianum</i> variegated thistle	186(2), 188(1)(2) 192(2), 194	3	The whole of the State. The areas of the Kangaroo Island and Limestone Coast Regions.
CLASS 54			
<i>Dipogon lignosus</i> dolichos pea	186(2), 188(1)(2)	3	The whole of the State.
	192(2), 194		The areas of the Eyre Peninsula, Green Adelaide, Hills and Fleurieu, Kangaroo Island and Limestone Coast Regions.

Plants	Provisions of Act Which are to Apply	Category	Declared Area
CLASS 55			
Retama monosperma and Retama raetam white weeping brooms	186(1)(2), 188(1)(2)	3	The whole of the State.
	192(2), 194		The areas of the Alinytjara Wilurara, Eyre Peninsula, Murraylands and Riverland, and Limestone Coast Regions.
CLASS 56			
Juncus acutus spiny rush	186(1)(2), 188(1)(2)	3	The whole of the State.
Salix nigra black willow	192(2), 194		The areas of the Green Adelaide, Hills and Fleurieu, Murraylands and Riverland, and
Salix fragilis and Salix rubens crack willow			Limestone Coast Regions.
Salix calodendron, Salix caprea, Salix cinerea and Salix reichardtii goat willows			
all hybrids between Salix alba and Salix matsudana matsudana hybrid willows			
CLASS 57			
Zantedeschia aethiopica arum lily	186(2), 188(1)	3	The whole of the State.
(excluding cut flowering stems, and arum lilies planted and maintained more than 100m from any wetland or watercourse for domestic or commercial purposes)	192(2), 194		The area of the Green Adelaide and Hills and Fleurieu Regions.
CLASS 58			
<i>Acer negundo</i> box elder	188(1)	3	The whole of the State.
excluding the cultivar 'Sensation'	192(2), 194		The areas of the Green Adelaide, Hills and Fleurieu and Murraylands and Riverland Regions
CLASS 59			
Fraxinus angustifolia desert ash	188(1)	3	The whole of the State.
excluding the cultivar 'Raywood'	192(2), 194		The areas of the Green Adelaide, Hills and Fleurieu and Kangaroo Island Regions.
CLASS 60			
<i>Erica baccans</i> berry heath (excluding cut flowering stems)	186(2), 188(1)(2) 192(2), 194	3	The whole of the State. The area of the Green Adelaide, Hills and Fleurieu and Limestone Coast Regions.

Plants	Provisions of Act Which are to Apply	Category	Declared Area
CLASS 61			
<i>Gazania</i> spp. gazania	186(1)(2), 188(1)(2)	3	The whole of the State.
excluding the cultivars: 'Sugaja' (sold as Sunset Jane TM) 'Sugamo' (sold as Montezuma TM) 'GT20' (sold as Double Gold TM)	192(2), 194		The area of the Green Adelaide, Hills and Fleurieu and Limestone Coast Regions.
CLASS 62			
Alisma lanceolatum alisma	186(2), 188(1)(2)	3	The whole of the State.
<i>Myriophyllum aquaticum</i> parrot feather	192(2)		The areas of the Green Adelaide, Hills and Fleurieu and Murraylands and Riverland Regions.
CLASS 63			
Rhamnus alaternus Italian buckthorn	188(1)(2)	3	The whole of the State.
	192(2)		The areas of the Eyre Peninsula, Green Adelaide, Hills and Fleurieu, Kangaroo Island, Murraylands and Riverland, and Limestone Coast Regions.
	194		The area of the Limestone Coast Region.
CLASS 64			
Billardiera fusiformis and Billardiera heterophylla bluebell creepers	188(1)(2)	3	The whole of the State.
Pittosporum undulatum sweet pittosporum	192(2), 194		The areas of the Green Adelaide, Hills and Fleurieu, Kangaroo Island and Limestone Coast Regions.
CLASS 65			
Coprosma repens mirror bush	188(1)	3	The whole of the State.
(excluding any named cultivars)	192(2)		The area of Green Adelaide and Hills and Fleurieu Regions.
CLASS 66			
Bifora testiculata bifora	186(1)(2), 188(1)(2)	3	The whole of the State.
Galium tricornutum three-horned bedstraw	190(1)		The area of the Eyre Peninsula Region.

Plants	Provisions of Act Which are to Apply	Category	Declared Area	
CLASS 67				
Arundo donax giant reed	186(2), 188(1), 191(3)	2	The whole of the State.	
CLASS 68				
Andropogon gayanus gamba grass	186(1)(2), 188(1)(2)	3	The whole of the State.	
Annona glabra pond apple				
<i>Cryptostegia grandiflora</i> rubber vine				
Hymenachne amplexicaulis and Hymenachne calamitosa hymenachne				
Jatropha gossypiifolia bellyache bush				
Lantana camara common lantana				
Matthiola longipetala nightstock				
<i>Miconia</i> spp. miconia				
<i>Mimosa pigra</i> mimosa				
Myagrum perfoliatum muskweed				
Striga spp., excluding Striga curviflora, Striga multiflora, Striga parviflora and Striga squamigera witchweeds				
CLASS 69				
Salix subgenus Caprisalix, excluding Salix calodendron, Salix caprea, Salix cinerea and Salix reichardtii goat willows	188(1)	3	The whole of the State.	
Salix subgenus Salix, excluding Salix babylonica, Salix fragilis, Salix nigra, Salix pendulina, Salix rubens, Salix sepulcralis, and all hybrids between Salix alba and Salix matsudana willows				

Dated: 23 July 2020

DAVID SPEIRS MP Minister for Environment and Water

Legislative History

Issue	Date of Operation	Date Gazetted	Page No(s)
Initial Declaration	23 July 2020	23 July 2020	No. 60, 4002 – 4023
Animals – Vary Class 16, in relation to deer	4 December 2020	4 December 2020	No. 93, 5547

APPENDIX F AIR QUALITY ASSESSMENT

Barker Inlet Power Station - Stage 2 Variation

Air Quality Impact Assessment

PREPARED FOR

DATE 3 June 2025

REFERENCE 0748611

DOCUMENT DETAILS

DOCUMENT TITLE	Barker Inlet Power Station - Stage 2 Variation
DOCUMENT SUBTITLE	Air Quality Impact Assessment
PROJECT NUMBER	0748611
DATE	3 June 2025
VERSION	FINAL
AUTHOR	Ethan Edwards, James Grieve
CLIENT NAME	AECOM Australia Pty Ltd

DOCUMENT HISTORY

		ERM APPROVAL TO ISSUE				
VERSION	REVISION	AUTHORS	REVIEWED BY	NAME	DATE	COMMENTS
DRAFT	D1	E. Edwards, J. Grieve	J. Grieve, J. Luk	J. Luk	29.11.2024	Draft
FINAL	R1	J. Grieve	J. Luk	J. Luk	20.12.2024	Final
FINAL	R2	J. Grieve	J. Luk	J. Luk	03.06.2025	Revised Final

This report was prepared in accordance with the scope of work outlined within this report and subject to the applicable cost, time and other constraints. Environmental Resources Management Australia Pty Ltd (ERM) performed the services in a manner consistent with the normal level of care and expertise exercised by members of the environmental profession. ERM makes no warranty concerning the suitability of the site for any purpose or the permissibility of any use, development or re-development of the site. Except as otherwise stated, ERM's assessment is limited strictly to identifying specified environmental conditions associated with the scope of work.

This assessment is based on the sampling and analyses described in the report. All conclusions and recommendations made in the report are the professional opinions of the ERM personnel involved with the project and, while normal checking of the accuracy of data has been conducted, ERM assumes no responsibility or liability for errors in data obtained from such sources, regulatory agencies or any other external sources, nor from occurrences outside the scope of this project.

ERM prepared this report for the sole and exclusive benefit and use of the client. Notwithstanding delivery of this report to any third party, unless otherwise expressly agreed, any copy of this report provided to a third party is provided for informational purposes only, without the right to rely and ERM disclaims all liability to such third party to the extent permitted by law. Any use of this report by a third party is deemed to constitute acceptance of this limitation.

Barker Inlet Power Station - Stage 2 Variation Air Quality Impact Assessment

James Grieve Principal Air Quality Consultant

knut

Jenny Luk Partner

Environmental Resources Management Australia Pty Ltd Level 14, 207 Kent Street Sydney, NSW 2000

T +61 2 8584 8888

© Copyright 2025 by The ERM International Group Limited and/or its affiliates (`ERM'). All Rights Reserved. No part of this work may be reproduced or transmitted in any form or by any means, without prior written permission of ERM.

CONTENTS

EXE	CUTIVE SUMMARY	1
1.	INTRODUCTION	4
1.1 1.2	PROJECT OVERVIEW SCOPE OF WORKS	4 4
2.	REGULATORY FRAMEWORK	6
2.1 2.2	AMBIENT AIR ASSESSMENT CRITERIA SOURCE EMISSION LIMITS	6 7
3.	EXISTING ENVIRONMENT	8
3.1 3.2 3.3	CLIMATE TERRAIN AND METEOROLOGY EXISTING AMBIENT AIR QUALITY 3.3.1 Nitrogen Dioxide (NO ₂) 3.3.2 Carbon Monoxide (CO) 3.3.3 Sulphur Dioxide (SO ₂) 3.3.4 Particulate Matter as PM _{2.5} and PM ₁₀	8 10 15 15 15 16 16
4.	ASSESSMENT METHODOLOGY	17
 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 	METEORULOGICAL DATASETASSESSMENT SCENARIOS4.2.1Plant Scenarios4.2.2Plant Options4.2.3Fuel TypesEMISSION ESTIMATION4.3.1Stack Locations4.3.2Oxides of Nitrogen (NOx) and Carbon Monoxide (CO)4.3.3Particulate Matter, Benzene, Formaldehyde and PAHs4.3.4Sulfur Dioxide4.3.5Emission InventoryBUILDING DOWNWASHBACKGROUND MONITORING DATANO2 CONVERSIONMODEL RECEPTORSPREDICTIONS FOR SUB-HOURLY AVERAGING PERIODS	17 17 18 19 19 21 21 21 22 23 27 28 28 28 29 32
5.	ASSESSMENT RESULTS	33
5.1 5.2 5.3 5.4	NITROGEN DIOXIDE (NO2) PARTICULATE MATTER (PM) FORMALDEHYDE OTHER POLLUTANTS	34 56 75 75
6.	GREENHOUSE GAS (GHG) EMISSIONS	80
6.1 6.2 6.3	BIPS 1 OPERATIONS BIPS 2 EMISSION ESTIMATES 6.2.1 Fuel Consumption SUMMARY	80 80 80 83

7.	CONCLUSIONS	84
8.	REFERENCES	86

APPENDIX A METEOROLOGICAL DATA PREPARATION

APPENDIX B ADDITIONAL RESULTS TABLES

LIST OF TABLES

TABLE 2-1	AIR EPP ASSESSMENT CRITERIA	6
TABLE 2-2	AIR EPP SCHEDULE 4 – IN-STACK EMISSION LIMITS	7
TABLE 3-1	SUMMARY OF CLIMATE STATISTICS FOR THE BOM PARAFIELD AIRPORT AWS	9
TABLE 3-2	SUMMARY OF NO ₂ CONCENTRATION STATISTICS (μ G/M ³)	15
TABLE 3-3	SUMMARY OF CO MONITORING STATISTICS (µG/M ³)	16
TABLE 3-4	SUMMARY OF SO ₂ MONITORING STATISTICS (μ G/M ³)	16
TABLE 3-5	SUMMARY OF $PM_{2.5}$ AND PM_{10} MONITORING STATISTICS (μ G/M ³)	16
TABLE 4-1	SUMMARY OF PLANT SCENARIOS	18
TABLE 4-2	SUMMARY OF PLANT OPTIONS	18
TABLE 4-3	BASIS OF EMISSION ESTIMATES	20
TABLE 4-4	ADOPTED US EPA AP-42 EMISSION FACTORS (LB/MMBTU)	22
TABLE 4-5	FUEL-SPECIFIC SO ₂ EMISSION FACTOR FOR NATURAL GAS	22
TABLE 4-6	FUEL-SPECIFIC SO ₂ EMISSION FACTOR FOR DISTILLATE OIL	23
TABLE 4-7	SUMMARY OF MODELLED EMISSION PARAMETERS	24
TABLE 4-8	DETAILED EMISSION CALCULATIONS	25
TABLE 4-9	SUMMARY OF MODELLED EMISSION RATES	26
TABLE 4-10	SUMMARY OF ADOPTED BACKGROUND DATA (μ G/M ³)	28
TABLE 4-11	SUMMARY OF MODELLED SUBURBAN DISCRETE RECEPTOR LOCATIONS	30
TABLE 5-1	MAXIMUM 1-HOUR AVERAGE INCREMENTAL NO ₂ PREDICTIONS – PLANT SCENAR (BIPS 2) (μ G/M ³)	IO 1 35
TABLE 5-2	MAXIMUM 1-HOUR AVERAGE INCREMENTAL NO ₂ PREDICTIONS – PLANT SCENAR (BIPS 2 + BIPS 1) (μ G/M ³)	IO 2 36
TABLE 5-3	MAXIMUM 1-HOUR AVERAGE INCREMENTAL NO ₂ PREDICTIONS – PLANT SCENAR (BIPS 2 + BIPS 1 + TIPS B) (μ G/M ³)	IO 3 37
TABLE 5-4	MAXIMUM 1-HOUR AVERAGE CUMULATIVE NO ₂ PREDICTIONS- PLANT SCENARIO (BIPS 2) (μ G/M ³)) 1 38
TABLE 5-5	MAXIMUM 1-HOUR AVERAGE CUMULATIVE NO ₂ PREDICTIONS- PLANT SCENARIO (BIPS 2 + BIPS 1) (μ G/M ³)) 2 39
TABLE 5-6	CUMULATIVE MAXIMUM 1-HOUR AVERAGE NO ₂ PREDICTIONS – PLANT SCENARIC (BIPS 2 + BIPS 1 + TIPS B) (μ G/M ³)	03 40
TABLE 5-7	ANNUAL AVERAGE NO ₂ PREDICTIONS – PLANT SCENARIO 1 (BIPS 2) (μ G/M ³)	41
TABLE 5-8	ANNUAL AVERAGE NO ₂ PREDICTIONS – PLANT SCENARIO 2 (BIPS 2 + BIPS 1) $(\mu G/M^3)$	42
TABLE 5-9	ANNUAL AVERAGE NO ₂ PREDICTIONS – PLANT SCENARIO 3 (BIPS 2 + BIPS 1 + B) (μ G/M ³)	TIPS 43
TABLE 5-10	MAXIMUM 24-HOUR AVERAGE PM PREDICTIONS – PLANT SCENARIO 1 (BIPS 2) $(\mu G/M^3)$	57
TABLE 5-11	MAXIMUM 24-HOUR AVERAGE PM PREDICTIONS – PLANT SCENARIO 2 (BIPS 2 + BIPS 1) (μ G/M ³)	58
TABLE 5-12	MAXIMUM 24-HOUR AVERAGE PM PREDICTIONS – PLANT SCENARIO 3 (BIPS 2 + BIPS 1 + TIPS B) (μ G/M ³)	59
TABLE 5-13	ANNUAL AVERAGE $PM_{2.5}$ PREDICTIONS – PLANT SCENARIO 1 (BIPS 2) (μ G/M ³)	60

TABLE 5-14	ANNUAL AVERAGE $PM_{2.5}$ PREDICTIONS – PLANT SCENARIO 2 (BIPS 2 + BIPS 1) (μ G/M ³)	61
	ANNUAL AVERAGE $PM_{2.5}$ PREDICTIONS – PLANT SCENARIO 3 (BIPS 2 + BIPS 1 + TIPS B) ($\mu G/M^3)$	62
TABLE 5-16	MAXIMUM 3-MINUTE AVERAGE FORMALDEHYDE PREDICTIONS – PLANT SCENARIO (BIPS 2) (μ G/M ³)	1 76
TABLE 5-17	MAXIMUM 3-MINUTE AVERAGE FORMALDEHYDE PREDICTIONS – PLANT SCENARIO (BIPS 2 + BIPS 1) (μ G/M ³)	2 77
TABLE 5-18	MAXIMUM 3-MINUTE AVERAGE FORMALDEHYDE PREDICTIONS – PLANT SCENARIO (BIPS 2 + BIPS 1 + TIPS B) (μ G/M ³)	3 78
TABLE 6-1	SUMMARY OF BIPS 1 OUTPUT AND CAPACITY FACTOR	80
	ESTIMATE OF GENERATION OUTPUT AND FUEL CONSUMPTION FOR EACH PLANT OPTION	81
TABLE 6-3	SUMMARY OF ADOPTED EMISSION FACTORS	81
TABLE 6-4	SUMMARY OF GHG EMISSION ESTIMATES	82

LIST OF FIGURES

FIGURE 3-1	LOCATION OF METEOROLOGICAL AND AMBIENT AIR QUALITY MONITORING	
	LOCATIONS RELATIVE TO TERRAIN	10
FIGURE 3-2	DISTRIBUTION OF WINDS AT NEARBY BOM STATIONS (2019 - 2023)	12
FIGURE 3-3	SEASONAL DISTRIBUTION OF WINDS AT NEARBY BOM STATIONS (2019 - 2023)	13
FIGURE 3-4	DIURNAL DISTRIBUTION OF WINDS AT NEARBY BOM STATIONS (2019 - 2023)	14
FIGURE 4-1	VISUAL REPRESENTATION OF MODEL SOURCES (RED) AND BUILDING DOWNWASH STRUCTURES (BLUE VOLUME)	H 27
FIGURE 4-2	AERIAL IMAGE SHOWING GRIDDED RECEPTOR DOMAIN EXTENT AND DISCRETE RECEPTOR LOCATIONS	31
FIGURE 5-1	PLANT OPTION E1: MAXIMUM 1-HOUR AVERAGE INCREMENTAL NO2 PREDICTIONS PLANT SCENARIO 1 (BIPS 2) (μ G/M ³)	5 – 44
FIGURE 5-2	PLANT OPTION E2: MAXIMUM 1-HOUR AVERAGE INCREMENTAL NO2 PREDICTIONS PLANT SCENARIO 1 (BIPS 2) (μ G/M ³)	5 – 45
FIGURE 5-3	PLANT OPTION F1: MAXIMUM 1-HOUR AVERAGE INCREMENTAL NO2 PREDICTIONS PLANT SCENARIO 1 (BIPS 2) (μ G/M ³)	5 – 46
FIGURE 5-4	PLANT OPTION F2: MAXIMUM 1-HOUR AVERAGE INCREMENTAL NO ₂ PREDICTIONS PLANT SCENARIO 1 (BIPS 2) (μ G/M ³)	5 – 47
FIGURE 5-5	PLANT OPTION AD: MAXIMUM 1-HOUR AVERAGE INCREMENTAL NO ₂ PREDICTIONS PLANT SCENARIO 1 (BIPS 2) (μ G/M ³)	5 - 48
FIGURE 5-6	PLANT OPTION RE: MAXIMUM 1-HOUR AVERAGE INCREMENTAL NO ₂ PREDICTIONS PLANT SCENARIO 1 (BIPS 2) (μ G/M ³)	5 – 49
FIGURE 5-7	PLANT OPTION E1: MAXIMUM 1-HOUR AVERAGE CUMULATIVE NO2 PREDICTIONS PLANT SCENARIO 3 (BIPS 2 + BIPS 1 + TIPS B) (μ G/M ³)	_ 50
FIGURE 5-8	PLANT OPTION E2: MAXIMUM 1-HOUR AVERAGE CUMULATIVE NO2 PREDICTIONS PLANT SCENARIO 3 (BIPS 2 + BIPS 1 + TIPS B) (μ G/M ³)	_ 51
FIGURE 5-9	PLANT OPTION F1: MAXIMUM 1-HOUR AVERAGE CUMULATIVE NO2 PREDICTIONS - PLANT SCENARIO 3 (BIPS 2 + BIPS 1 + TIPS B) (μ G/M ³)	_ 52
FIGURE 5-10	PLANT OPTION F2: MAXIMUM 1-HOUR AVERAGE CUMULATIVE NO ₂ PREDICTIONS - PLANT SCENARIO 3 (BIPS 2 + BIPS 1 + TIPS B) (μ G/M ³)	_ 53
FIGURE 5-11	PLANT OPTION AD: CUMULATIVE MAXIMUM 1-HOUR AVERAGE NO_2 PREDICTIONS PLANT SCENARIO 3 (BIPS 2 + BIPS 1 + TIPS B) (μ G/M ³)	_ 54
FIGURE 5-12	PLANT OPTION RE: MAXIMUM 1-HOUR AVERAGE CUMULATIVE NO ₂ PREDICTIONS PLANT SCENARIO 3 (BIPS 2 + BIPS 1 + TIPS B) (μ G/M ³)	_ 55
FIGURE 5-13	PLANT OPTION E1: MAXIMUM 24-HOUR AVERAGE INCREMENTAL PM PREDICTIONS PLANT SCENARIO 1 (BIPS 2) (μ G/M ³)	63 – 63
FIGURE 5-14	PLANT OPTION E2: MAXIMUM 24-HOUR AVERAGE PM PREDICTIONS – PLANT SCENARIO 1 (BIPS 2) (μ G/M ³)	64

FIGURE 5-15	PLANT OPTION F1: MAXIMUM 24-HOUR AVERAGE PM PREDICTIONS – PLANT SCENARIO 1 (BIPS 2) (μ G/M ³)	65
FIGURE 5-16	PLANT OPTION F2: MAXIMUM 24-HOUR AVERAGE PM PREDICTIONS – PLANT SCENARIO 1 (BIPS 2) (μ G/M ³)	66
FIGURE 5-17	PLANT OPTION AD: MAXIMUM 24-HOUR AVERAGE PM PREDICTIONS – PLANT SCENARIO 1 (BIPS 2) (μ G/M ³)	67
FIGURE 5-18	PLANT OPTION RE: MAXIMUM 24-HOUR AVERAGE PM PREDICTIONS – PLANT SCENARIO 1 (BIPS 2) (μ G/M ³)	68
FIGURE 5-19	PLANT OPTION E1: MAXIMUM 24-HOUR AVERAGE PM PREDICTIONS – PLANT SCENARIO 3 (BIPS 2 + BIPS 1 + TIPS B) (μ G/M ³)	69
FIGURE 5-20	PLANT OPTION E2: MAXIMUM 24-HOUR AVERAGE PM PREDICTIONS – PLANT SCENARIO 3 (BIPS 2 + BIPS 1 + TIPS B) (μ G/M ³)	70
FIGURE 5-21	PLANT OPTION F1: MAXIMUM 24-HOUR AVERAGE PM PREDICTIONS – PLANT SCENARIO 3 (BIPS 2 + BIPS 1 + TIPS B) (μ G/M ³)	71
FIGURE 5-22	PLANT OPTION F2 – MAXIMUM 24-HOUR AVERAGE PM PREDICTIONS – PLANT SCENARIO 3 (BIPS 2 + BIPS 1 + TIPS B) (μ G/M ³)	72
FIGURE 5-23	PLANT OPTION AD: MAXIMUM 24-HOUR AVERAGE PM PREDICTIONS – PLANT SCENARIO 3 (BIPS 2 + BIPS 1 + TIPS B) (μ G/M ³)	73
FIGURE 5-24	PLANT OPTION RE: MAXIMUM 24-HOUR AVERAGE PM PREDICTIONS – PLANT SCENARIO 3 (BIPS 2 + BIPS 1 + TIPS B) (μ G/M ³)	74
FIGURE 5-25	RE NG – MAXIMUM 3-MIN AVERAGE FORMALDEHYDE PREDICTIONS (μ G/M ³)	79

ACRONYMS AND ABBREVIATIONS

Acronym	Description
AD	Aeroderivative gas turbine (plant option)
ADO	Automotive Diesel Oil
Air EPP	Environment Protection (Air Quality) Policy 2016
AQIA	Air quality impact assessment
AQMS	Air quality monitoring station
AWS	Automatic weather station
BIPS	Barker Inlet Power Station
BIPS 1	Barker Inlet Power Station – Stage 1
BIPS 2	Barker Inlet Power Station – Stage 2
ВоМ	Bureau of Meteorology
CH ₄	Methane
СО	Carbon monoxide
CO ₂	Carbon dioxide
CO ₂ -e	Carbon dioxide equivalent
DA	Development Approval
DCCEEW	Department of Climate Change, Energy, the Environment and Water
DO	Distillate oil
E1	E-class gas turbine – Plant option 1 (150 MW)
E2	E-class gas turbine - Plant option 2 (200 MW)
F1	F-class gas turbine – Plant option 1 (280 MW)
F2	F-class gas turbine – Plant option 2 (330 MW)
GHG	Greenhouse gas
GHGA	Greenhouse gas assessment
GJ	Gigajoule
GW	Gigawatt
GWh	Gigawatt hour
HHV	Higher heating value
LHV	Lower heating value
mAGL	Metres (elevation) - above ground level
mAHD	Metres (elevation) - Australian height datum
MW	Megawatt
MW_{th}	Megawatt (thermal basis)
MWh	Megawatt hour
NCAR	National Centre for Atmospheric Research

Acronym	Description
NG	Natural gas
NO	Nitric Oxide
NO ₂	Nitrogen dioxide
N_2O	Nitrous oxide
NO _x	Oxides of nitrogen
O ₂	Oxygen
OLM	Ozone limiting method
PAHs	Polycyclic aromatic hydrocarbons
PEF	Potency equivalent factor
РМ	Particulate matter
PM _{2.5}	Particulate matter less than 2.5 microns in aerodynamic diameter
PM ₁₀	Particulate matter less than 10 microns in aerodynamic diameter
PS1	Plant Scenario 1 – BIPS 2 (modelled in isolation)
PS2	Plant Scenario 2 – BIPS 2 + BIPS 1
PS3	Plant Scenario 3 – BIPS 2 + BIPS 1 + TIPS B
RAAF	Royal Australian Air Force
RE	Reciprocating engine (plant option)
RFI	Request for information
SA EPA	South Australian Environment Protection Authority
SO ₂	Sulphur dioxide
TIPS	Torrens Island Power Station
TIPS A	Torrens Island Power Station – A Station
TIPS B	Torrens Island Power Station – B Station
µg/m³	Micrograms per cubic metre
WRF	Weather Research and Forecast model (developed by US National Centre for Atmospheric Research)

EXECUTIVE SUMMARY

Environmental Resources Management Australia Pty Ltd (ERM), was commissioned by AECOM Australia Pty Ltd (AECOM) to prepare an air quality impact assessment (AQIA) for the proposed variation of the existing Development Approval (DA) for the AGL Barker Inlet Power Station (BIPS). AGL are seeking to modify the DA to permit a wider range of plant options for Stage 2 of the BIPS (BIPS 2), including:

- to enable BIPS 2 to use either gas turbines or reciprocating engines (instead of reciprocating engines only as currently approved); and
- to increase the proposed output of BIPS 2 to up to 280 MW (instead of the currently approved 210 MW).

ERM (formerly Pacific Environment) prepared the initial BIPS air quality assessment that forms part of the existing DA (PEL, 2017a). Where relevant, this AQIA has been prepared to align with the PEL (2017a), whilst incorporating updates to the methodologies, including:

- Updated meteorological and background air quality datasets that reflect current state of practice and ambient air quality within the Adelaide airshed;
- Assessment against the updated nitrogen dioxide (NO₂) and sulphur dioxide (SO₂) ambient air quality standards which are specified in the *Environment Protection (Air Quality) Policy 2016* (SA, 2023) ('the Air EPP'); and
- Changes to local emission sources, including the retirement of Torrens Island Power Station A (TIPS A), the reduced operation of Torrens Island Power Station B (TIPS B), and operation of BIPS 1.

ERM undertook a review of manufacturer emission data for a total of 6 plant options, inclusive of gas turbine and reciprocating engine technologies. This data was compiled to provide an emission inventory for sources considered in the variation.

Atmospheric dispersion modelling was performed for the 2023 calendar year using the CALPUFF dispersion model in a manner generally consistent with PEL (2017a) with the assumption of continuous operation of plant at full load.

Dispersion modelling included 3 plant scenarios compiled as per the following:

- Plant Scenario 1 (PS1): BIPS 2 (each fuel and plant option) modelled in isolation;
- Plant Scenario 2 (PS2): BIPS 2 (each fuel and plant option) operating concurrently with BIPS 1; and
- Plant Scenario 3 (PS3): BIPS 2 (each fuel and plant option) operating concurrently with BIPS 1 and TIPS B.

Predictions were compared against respective criteria outlined in the Air EPP, with the following key findings:

Nitrogen Dioxide (NO₂)

All predictions are compliant with the respective assessment criteria:

• A peak 1-hour sensitive receptor cumulative NO₂ prediction of 126 µg/m³ reported for distillate operation of the reciprocating engine plant option under Plant Scenario 3.

This concentration equates to 76% of the 164 μ g/m³ criterion and is based on continuous operation of BIPS 1 and BIPS 2 on distillate fuel, and TIPS B operating on natural gas, with all plant operating at 100% of available plant load.

This represents a conservative basis for assessment given the intermittent operation of these facilities and use of natural gas, for which peak prediction was approximately 20 μ g/m³ lower, and close to the existing ambient background concentrations.

 Annual average NO₂ predictions are low relative to criterion of 30 µg/m³, with maximum cumulative predictions less than half of the standard despite the assumption of continuous operation.

Particulate Matter

All predictions are compliant with the respective assessment criteria:

A peak 24-hour sensitive receptor PM prediction of 3 µg/m³ was reported for distillate operation of the aeroderivative plant option for Plant Scenario 3. When added to the corresponding background PM_{2.5} concentration, the cumulative prediction is compliant, equating to approximately half of the 25 µg/m³ criterion.

It is noted that this scenario has been based on continuous operation of BIPS 1 and BIPS 2 on distillate fuel, and TIPS B operating on natural gas, with all plant operating at 100% of available plant load. This provides a conservative basis for assessment given the intermittent operation of these facilities and use of natural gas.

• Annual average $PM_{2.5}$ predictions are low relative to criterion of 8 µg/m³, with the various BIPS 2 plant options contributing a grid maximum of 0.1 µg/m³. Accordingly, the significance of BIPS 2 to annual average $PM_{2.5}$ concentrations is considered negligible. Annual average predictions for Plant Scenario 3 are also low, with maximum sensitive gridded receptor predictions equal to or less than 0.1 µg/m³, and thus complies with assessment criteria when existing background concentration is added.

Formaldehyde and other pollutants

- Formaldehyde predictions are compliant with the Air EPP 3-minute criterion of 44 µg/m³, with BIPS 2 contributing up to 52% of the criterion under natural gas operation.
 Predictions for all other plant options are an order of magnitude lower.
- Predictions for all other pollutants were low and compliant with the respective criteria.

Greenhouse gas emissions

Greenhouse gas emissions were estimated based on manufacturer data and generic assumptions around frequency of operation. Scope 1 greenhouse gas emissions have been estimated to range between approximately 200–300 kt CO₂-e per annum, at Scope 1 and Scope 1+3 emission intensities of 0.6 and 0.7 t/MWh (respectively). Operational emission intensity was estimated to be consistent among plant options, with the range in emissions arising from the range of estimated generation outputs (320-520 GWh per annum) as associated with the varying sizes of plant options that were assessed.

It is also noted that the plant options possess varying capabilities to accommodate blending of hydrogen into the fuel mix. Where this hydrogen is produced from renewable energy sources, this practice would offer opportunities to further reduce GHG emissions, both through a reduction in Scope 1 emissions, and avoidance of natural gas consumption and associated Scope 3 emissions.

Summary

Collectively, the analysis conducted within this assessment predicts compliance with Air EPP criteria and indicates that the potential for the variation to the Approved Project to accommodate the design updates for BIPS 2 to generate adverse air quality impacts is low and manageable through effective operation of the proposed plant.

Should AGL elect to progress the reciprocating engine option, it is recommended that emission performance for oxides of nitrogen and formaldehyde are reviewed to assess consistency of the designed emission performance with the assumptions of this analysis, which has assumed performance equivalent to that of BIPS 1. As constructed, BIPS 1 includes selective catalytic reduction and oxidation catalysts for control of these emissions.

1. INTRODUCTION

Environmental Resources Management Australia Pty Ltd (ERM), has been commissioned by AECOM Australia Pty Ltd (AECOM) on behalf of AGL Energy Limited (AGL) to prepare an air quality impact assessment (AQIA) for the proposed variation of the existing Development Approval (DA) for the Barker Inlet Power Station (BIPS).

This report provides an assessment of potential air quality impacts associated with the variation as based on the *Environment Protection (Air Quality) Policy 2016* (SA, 2023), 'the Air EPP and relevant methodologies provided in the South Australian Environment Protection Authority (SA EPA) Guideline *Environment Protection Authority – Ambient Air Quality Assessment* (SA EPA, 2016),'the air quality assessment guideline'.

1.1 PROJECT OVERVIEW

The existing DA was granted in 2018 and permits construction and operation of the BIPS in two stages (BIPS 1 and BIPS 2), with each stage comprising 12 reciprocating engines and an electrical output of 210 MW. BIPS Stage 1 (BIPS 1) was commissioned in late 2019 and is now operational. AGL are seeking to vary the DA to permit a wider range of plant options for BIPS 2, including the option to utilise either gas turbines or reciprocating engines (instead of reciprocating engines only as currently approved) and the proposed increased capacity of up to 280MW. The potential impacts of these changes on ambient air quality and greenhouse gas emissions requires assessment as part of the variation and is the subject of this AQIA.

ERM (formerly Pacific Environment) prepared the initial BIPS air quality assessment that forms part of the existing BIPS approval (PEL, 2017a). Where relevant, this AQIA has been prepared to align with the PEL (2017a), whilst incorporating updates to the methodologies, including:

- Updated meteorological and background air quality datasets that reflect current state of practice and ambient air quality within the Adelaide airshed;
- Assessment against updated nitrogen dioxide (NO₂) and sulphur dioxide (SO₂) ambient air quality standards which are specified in the Air EPP; and
- Changes to local emission sources, including the retirement of Torrens Island Power Station A (TIPS A), the reduced operation of Torrens Island Power Station B (TIPS B), and operation of BIPS 1.

1.2 SCOPE OF WORKS

ERM has undertaken the following scope in preparation of this AQIA:

- Completion of a review of existing ambient air quality and meteorological monitoring data from the last 5 years. This review will characterise the local air quality performance and trends, with nomination of a representative calendar year for dispersion modelling;
- Preparation of a region-specific meteorological dataset using the US National Centre for Atmospheric Research (NCAR) Weather Research and Forecasting (WRF) meteorological model. The outputs of this model will be processed using the CALWRF utility, for application in the CALMET meteorological pre-processor;
- Preparation of an emission inventory for the proposed BIPS 2 plant options, operating on natural gas and diesel fuels including:
 - Reciprocating engine-based plant; and

- Gas turbine-based plant.
- CALPUFF atmospheric dispersion modelling of the updated BIPS 2 plant options in conjunction with existing AGL sources, including TIPS B and BIPS 1;
- Assessment of model predictions against relevant air quality standards. Model predictions will be provided as discrete receptor tables and contour isopleths;
- Preparation of a summary of greenhouse gas emission performance of the modification; and
- Preparation of a technical report documenting the applied methodologies and assessment findings (this AQIA report).

2. REGULATORY FRAMEWORK

2.1 AMBIENT AIR ASSESSMENT CRITERIA

The assessment of potential impacts associated with the variation has been undertaken in accordance with the Air EPP and relevant methodologies provided in the air quality assessment guideline.

These references include air quality criteria for the following pollutants, as assessed in PEL (2017a):

- Nitrogen Dioxide (NO₂);
- Carbon monoxide (CO);
- Sulphur Dioxide (SO₂);
- Particulate matter less than 10 microns in aerodynamic diameter (PM₁₀);
- Particulate matter less than 2.5 microns in aerodynamic diameter (PM_{2.5});
- Formaldehyde;
- Benzene; and
- Polycyclic aromatic hydrocarbons (PAHs).

These pollutants represent key indicators in the context of air emission sources associated with the project:

It is noted that for the combustion sources considered in this assessment, all particulate matter is effectively less than 2.5 microns in aerodynamic diameter. Accordingly, PM_{2.5} emissions and ambient air quality predictions are also equal to those for PM₁₀. The air quality criteria relevant to this assessment are presented as maximum concentrations in Schedule 2 of the Air EPP. **Table 2-1** presents these criteria.

Pollutant	Averaging Period	Criterion (µg/m ³)
NO ₂	1 hour	164
	Annual	30
со	1 hour	31,240
	8 hours	11,250
SO ₂	1 hour	290
	24 hours	60
PM ₁₀	24 hours	50
PM _{2.5}	24 hours	25
	Annual	8
Formaldehyde	3 minutes	44
Benzene	3 minutes	58
	Annual	10
PAHs	3 minutes	0.8
	Annual	0.0003

TABLE 2-1 AIR EPP ASSESSMENT CRITERIA

2.2 SOURCE EMISSION LIMITS

The SA EPA regulates air emission sources in South Australia. Schedule 4 of the Air EPP provides in-stack emission limits that are relevant to plant options considered in this AQIA and are presented in **Table 2-2**.

TABLE 2-2 AIR EPP SCHEDULE 4 - IN-STACK EMISSION LIMITS

Pollutant	Activity	Fuel Type	Emission Limit (mg/m ³)	Reference Conditions
NO _x	Power generation of 250 MW or greater	-	700	7% O ₂
	Gas turbines for power	Gaseous fuel	70	15% 0
	generation of 10 MW or greater	Liquid fuel	150	15% O ₂

3. EXISTING ENVIRONMENT

This section provides a summary of the existing environment inclusive of climate, meteorology and ambient air quality.

3.1 CLIMATE

The Adelaide region features a mediterranean climate, characterised with cold to mild to wet winters and warm to hot dry summers. Most of the region's rainfall occurs from mid-autumn to mid-spring (April to October), which coincides with southern Australia's wet season. Rainfall can be unreliable and infrequent from late spring to early autumn (November to March) (BoM, 2023).

Long-term climate statistics are available from Bureau of Meteorology (BoM) Parafield automatic weather station (AWS) (Station #023013). The peak mean daily temperature of 30°C is recorded in January, with the lowest daily temperatures (Minimum: 6°C, Maximum: 15°C) occurring in July. The highest mean rainfall occurs in July, whilst the minimum rainfall occurs in February.

Table 3-1 presents a summary of monthly climate statistics recorded at the BoM Parafield Airport AWS between the years 1929 – 2023.

TABLE 3-1 SUMMARY OF CLIMATE STATISTICS FOR THE BOM PARAFIELD AIRPORT AWS

					Month				Year	Year					
Parameter	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual	Start	End
Mean Temperature	Mean Temperature														
Daily maximum (°C)	30	29	27	23	19	16	15	16	19	22	26	28	23	1939	2024
Daily minimum (°C)	16	16	15	12	9	7	6	7	8	10	13	15	11	1939	2024
Rainfall		·			·						·				
Mean (mm)	21	18	22	38	48	54	58	53	44	40	27	25	447	1929	2024
Median (mm)	15	10	11	35	46	49	51	53	41	35	23	17	-	n/a	n/a
Mean raindays	2	2	3	5	7	8	9	9	7	6	4	3	63	1929	2024
9 am Observations (n	nean)	·			·						·				
Temperature (°C)	22	22	20	17	14	11	10	11	14	17	19	21	16	1954	2010
Relative humidity (%)	50	52	56	62	74	83	82	76	68	58	54	51	64	1954	2010
Wind speed (km/h)	16	14	13	13	12	12	14	15	17	19	18	17	15	1939	2010
3 pm observations (mean)															
Temperature (°C)	29	29	26	22	18	15	14	16	18	21	25	26	22	1954	2010
Relative humidity (%)	34	35	38	44	56	66	65	60	56	46	39	38	48	1954	2010
Wind speed (km/h)	24	24	22	20	18	19	20	22	23	24	24	24	22	1939	2010

3.2 TERRAIN AND METEOROLOGY

SA EPA undertake ambient air quality monitoring at several locations in the region, including the Birkenhead, Elizabeth, Netley, North Haven and Northfield air quality monitoring stations (AQMS). In addition, BoM undertake continuous meteorological monitoring at a number of locations, including the Edinburgh Royal Australian Air Force (RAAF), Parafield Airport and Adelaide Airport¹ weather stations. **Figure 3-1** shows the location of each of these stations relative to surrounding terrain.

The Site is located at approximately 3 mAHD, similar to the nearest AQMS location, North Haven and closest receptors located on the Le Fevre peninsula to the west.

¹ Adelaide Airport is located south of Figure 3-1 domain.

Figure 3-2 through **Figure 3-3** illustrate the annual and seasonal wind distributions recorded by the Edinburgh RAAF, North Haven and Northfield BoM AWS locations, for data collected between 2019 and 2023. As shown in these figures, the most frequent winds occur from the northeast and southwest, with the northeasterlies persisting through the colder seasons and southwesterlies during the warmer seasons. Parafield Airport and Adelaide Airport feature more variability in wind direction throughout the year, although align with dominant wind directions featured at Edinburgh RAAF.

Figure 3-4 provides a wind roses for daytime and overnight winds. These figures illustrate that winds during the day are noticeably stronger than overnight, with a greater proportion of south-easterly winds during daytime conditions, as consistent with convective processes associated with elevated terrain to the east.

Additional annual and seasonal wind roses are provided in **Appendix A**.

FIGURE 3-2 DISTRIBUTION OF WINDS AT NEARBY BOM STATIONS (2019 – 2023)

FIGURE 3-3 SEASONAL DISTRIBUTION OF WINDS AT NEARBY BOM STATIONS (2019 – 2023)

FIGURE 3-4 DIURNAL DISTRIBUTION OF WINDS AT NEARBY BOM STATIONS (2019 – 2023)

Parafield Airport

Adelaide Airport

3.3 EXISTING AMBIENT AIR QUALITY

SA EPA collect ambient air monitoring data at a range of locations around the Adelaide region. Given the buoyant nature of emissions from thermal power generation, peak impacts have the potential to occur at areas of some distance from the source (e.g. 5 - 10 km), within an extent of Adelaide that includes several AQMS locations.

A summary of the ambient air quality data for selected sites are provided in the following sections.

The data indicate that generally air quality for the Adelaide metropolitan region is good. Exceedances of the SA EPA air quality criteria are typically limited to particulate matter (PM_{10} and $PM_{2.5}$), with regional PM_{10} sources (dust storms, bushfires etc.) being the dominant contributor to these exceedances.

3.3.1 NITROGEN DIOXIDE (NO₂)

Table 3-2 presents a summary of NO₂ concentrations recorded between 2019 and 2023, with the 5-year maximum 1-hour average being reported at North Haven in 2023. This concentration is equal to half of the criterion. The annual average NO₂ concentrations are commonly around 10 μ g/m³, which is equal to one third of the annual average criterion.

Year	M	laximum 1-Hou	ır	Annual		
rear	Elizabeth	North Haven	Northfield	Elizabeth	North Haven	Northfield
2019	62	70	72	8	10	12
2020	-	66	70	_*	10	11
2021	-	70	74	_*	10	11
2022	-	62	62	-*	9	8
2023	62	82	66	6	10	11
Criterion		164		30		

TABLE 3-2 SUMMARY OF NO₂ CONCENTRATION STATISTICS (µg/m³)

Note: *Not reported due to limited annual data capture (<30%).

3.3.2 CARBON MONOXIDE (CO)

Background CO concentrations measured at the Adelaide CBD AQMS. Reported concentrations are low, as shown in **Table 3-3**:

- The maximum 1-hour CO background was reported in 2023 and is 1% of the SA EPA assessment criterion of 31,240 $\mu g/m^3.$
- The maximum 8-hour background was reported in 2019 and is 2% of the SA EPA assessment criterion of 11,250 μ g/m³.

Year	Maximum 1-Hour	Maximum 8-hour
2019	218	154
2020	141	87
2021	253	134
2022	130	84
2023	309	123
Criterion	31,240	11,250

TABLE 3-3 SUMMARY OF CO MONITORING STATISTICS (µg/m³)

3.3.3 SULPHUR DIOXIDE (SO₂)

Table 3-4 presents a summary of key SO₂ statistics between 2019 and 2023. As shown in these data, measured SO₂ background concentrations of are typically low relative to the SA assessment criteria. Reductions in recent years are primarily a result of regulation of sulphur content in transport fuels. In 2020, regional sulphur emissions were further reduced with a seven-fold reduction in the permissible sulphur content in shipping fuels, being reduced from 3.5% to 0.5% on a mass basis (IMO, 2024). Since this time, peak 1-hour and 24-hour measurements have been equal to approximately 10% of respective criteria.

TABLE 3-4 SUMMARY OF SO₂ MONITORING STATISTICS (µg/m³)

Year	Maximum 1-hour	24-Hour Maximum
2019	83	28
2020	26	6
2021	3	3
2022	17	8
2023	14	9
Criterion	290	60

3.3.4 PARTICULATE MATTER AS $PM_{2.5}$ AND PM_{10}

Background concentrations for PM_{10} and $PM_{2.5}$ have been sourced from the North Haven AQMS as shown in **Table 3-5**.

TABLE 3-5 SUMMARY OF PM_{2.5} AND PM₁₀ MONITORING STATISTICS (µg/m³)

		РМ	12.5					
Year		24-Hour		Annual			Ammun	
i cui	Maximum	90 th Percentile	70 th Percentile	Annual Average	Maximum	90 th Percentile	70 th Percentile	Annual Average
2019	35	10	6	5.9	94	36	24	22
2020	27	8	5	4.8	56	27	18	16
2021	18	8	6	5.0	111	24	17	15
2022	10	7	5	4.3	41	21	15	13
2023	9	6	5	3.8	49	20	15	13
Criterion	25	-	-	8	50	-	-	-

Notes: **Bold** values indicate an elevated reading above the relevant criterion. Such exceedances arise due to a range of factors, inclusive of regional events such as dust storm and bushfire activity.

4. ASSESSMENT METHODOLOGY

This section summarises the methodology used to perform the air quality impact assessment. It covers the meteorological modelling methods, emission estimation and dispersion modelling.

4.1 METEOROLOGICAL DATASET

Meteorological and air quality trends for the last 5 years have been reviewed, with nomination of 2023 as an assessment year that contains meteorological patterns that are consistent with long-term trends. Meteorological modelling has been conducted to obtain representative meteorological fields for the 2023 calendar year (refer **Appendix A**).

The US National Centre for Atmospheric Research (NCAR) Weather Research and Forecasting Model (WRF version 4.2.1) has been used to generate hourly three-dimensional meteorological fields for 2023. WRF is a widely used 3-dimensional model that contains non-hydrostatic dynamics and a range of physical parameterizations for planetary boundary layer, atmospheric and surface radiation, land-surface, microphysics, and cumulus convection (Skamarock, et al., 2019). The WRF outputs have then been used in CALMET, the meteorological pre-processor for the CALPUFF dispersion model.

Further detail of this process can be found in **Appendix A**.

4.2 ASSESSMENT SCENARIOS

The assessment has considered a total of 36 emission scenarios inclusive of the following:

- Three plant scenarios, inclusive of combinations of BIPS2 and adjacent generation assets;
- Six plant design options, inclusive of five gas turbine options and a reciprocating engine option; and
- Two fuels options: natural gas (NG) and distillate oil (DO).

Further detail of these scenarios has been provided in the following.

4.2.1 PLANT SCENARIOS

Three plant scenarios have been compiled to assess compliance of the various plant options proposed for BIPS 2. Since completion of PEL (2017a), AGL has commissioned BIPS 1, which comprises of 12 reciprocating engines with a total capacity of 210 MW and decommissioned TIPS A. Three out of the four generation units at TIPS B are currently operational with a total capacity of 600 MW.

These sources have been included in the following plant scenarios:

- **Plant Scenario 1 (PS1):** BIPS 2 (each plant option) modelled in isolation.
 - Provides context on incremental impacts associated with sources proposed as part of the variation.
 - Assesses compliance of the various BIPS 2 plant options when operated in isolation of other AGL generation plants.
- **Plant Scenario 2 (PS2):** BIPS 2 operating concurrently with BIPS 1.
 - Assesses compliance of the various BIPS 2 plant options when operated concurrently with BIPS 1 at its maximum capacity of 210 MW.
- **Plant Scenario 3 (PS3)**: BIPS 2 operating concurrently with both BIPS 1 and TIPS B.

- Assesses compliance of the various BIPS 2 plant options when operated concurrently with BIPS 1 and TIPS B at its current maximum load (3 x 200 MW units).

All scenarios have assumed that emissions occur on a continuous basis, with all respective plant operating at full load. In reality, BIPS 2, BIPS 1 and TIPS B are anticipated to operate on an intermittent basis in response to electricity market demand. Accordingly, this approach is considered conservative, especially in the estimation of potential air quality impacts for averaging periods of greater than 1-hour (e.g 24-hour and annual averages).

Table 4-1 provides a summary of these scenarios and associated electrical output (MW).

Plant	G	Generation Source					
Scenario	BIPS 2	BIPS 1	TIPS B	(MW)			
PS1	✓			200 - 330			
PS2	✓	✓		410 - 540			
PS3	✓	✓	✓	1,010 - 1,140			

TABLE 4-1 SUMMARY OF PLANT SCENARIOS

Note: *Range across various BIPS 2 plant options. Approval is sought for up to 280 MW of generation capacity. Options assessed range up to 330 MW.

It is noted that PS3 provides an assessment of worst-case cumulative impacts from operations at TIPS and BIPS, with a combined electrical output of approximately 1,000 MW across the three facilities. Closure of TIPS B is planned for 2026, hence regular operation of all 3 facilities is expected to limited. Noting this, the inclusion of TIPS B also provides an assessment of potential cumulative impacts with other combustion sources in the region, noting that the relative proximity of TIPS B to BIPS 2 provides a conservative representation of potential cumulative impacts with other power generation facilities in the region that are more distant from BIPS 2. Wider treatment of potential cumulative impacts with other negative impacts with other regional sources has also been addressed through the incorporation background monitoring data, as outlined in **Section 4.6** and **Section 4.7**.

4.2.2 PLANT OPTIONS

AGL are currently in the process of reviewing and selecting the generation plant for use at BIPS 2. This includes a number of plant options, which are summarised in **Table 4-2**.

Option ID	Generator Type	Combustion Technology	Unit Output (MW)	Number of Units	Capacity (MW) ¹
E1		E-Class	150	2	300
E2		E-Class	200	1	200
F1	Gas Turbine	E Class	280	1	280
F2	-	F-Class	330	1	330
AD		Aeroderivative	140	2²	280
RE	Reciprocating Engine	Dual Fuel	25	10 ³	250

TABLE 4-2 SUMMARY OF PLANT OPTIONS

Note: ¹Approval is sought for up to 280 MW of generation capacity. Options assessed range up to 330 MW. ² Each unit comprises two gas turbine generators.

³Reciprocating engine option may alternatively comprise 12 smaller units possessing a similar total output. 10 unit option has been quantitatively assessed.

4.2.3 FUEL TYPES

AGL are proposing to use either natural gas or distillate oil fuel in BIPS 2. It is noted that distillate oil will comprise commercially available Automotive Diesel Oil (ADO) that meets the *Fuel Quality Standards (Automotive Diesel) Determination 2019* (AG, 2019), inclusive of a fuel sulphur content of less than 10 mg/kg. Each fuel type has been modelled separately, with the following assumptions for cumulative plant scenarios (PS2 and PS3):

- BIPS 1 is firing on distillate fuel when BIPS 2 is firing distillate fuel; and
- TIPS B operation is limited to natural gas.

4.3 EMISSION ESTIMATION

Emission parameters and emission rates have been compiled for the modelled plant options based on a range of information sources including:

- Generic plant layouts;
- Manufacturer performance specifications;
- The US EPA AP-42 emission factor database (US EPA, 2006);
- Fuel specifications for pipeline gas and automotive diesel (AEMO, 2017);(AG, 2024);
- Emission testing for BIPS 1 (which is operational); and
- Existing estimates documented in PEL (2017a).

Table 4-3 provides a summary of the various assumptions and methods applied in preparation of the emission inventory. Further detail of the emission estimates is provided in the following sections.

TABLE 4-3 BASIS OF EMISSION ESTIMATES

Option /	Fuel			Basi	s of Emission Estin	nates			
Source ID	ruei	NOx	со	SO ₂	РМ	Formaldehyde	Benzene	PAHs	
	Natural Gas		Manufacturer specification						
E1	Distillate Oil Typical performance specification	performance							
E2	Natural Gas	Manufacturer							
E2	Distillate Oil	specification			Manufacturer specification				
F1	Natural Gas Manufacturer Mass balance AP-42	(filterable), AP-42	AP-42						
FI	Distillate Oil		(condensables)	AP-42		AP-42*			
52	Natural Gas			(refer Section			AP-42	AP-42*	
F2	Distillate Oil			4.3.4)					
4.0	Natural Gas	Turing langt and	· · · · · · · · · · · · · · · · · · ·						
AD	Distillate Oil	Typical performation	nce specification						
	Natural Gas	BIPS 1 Spec	Maria		-	Assuming 20 mg/Nm ³ , dry,	Scaled from BIPS 1		
RE	Distillate Oil	Scaled from BIPS 1 (NG:DO NO _x ratio)	Manufacturer specification		7% O ₂ (filterable) PM**, AP-42 (condensables)	AP-42			
DIDC 1	Natural Gas	Manufactor				· · · · · · · · · · · · · · · · · · ·		PEL (2017)	
BIPS 1	Distillate Oil	Maximum te	sung results	PEL (2017a)				AP-42*	
TIPS B	Natural Gas		Scaled	from PEL (2017a) 1	.00% load figures to	reflect 3 units in ope	ration.		

Notes:

*AP-42 emission factors used in conjunction with B(a)P TEQ conversion factors.

**BIPS 1 in-stack PM concentrations observed to be at or less than (<) the limit of reporting (LOR) in 24 stack tests, which assuming ½ the LOR for all <LOR results, equates to an average concentration of 2 mg/Nm³ (dry, 7% O₂).

'Typical performance specifications' have been adopted where plant specific data was not available.

4.3.1 STACK LOCATIONS

Indicative stack locations have been compiled for each plant option assuming generic plant layouts located within the BIPS 2 area. Adjustment to these parameters is expected to occur with selection of the preferred plant option and progression of the detailed design. Such changes may arise from detailed consideration of spatial requirements, and/or adoption of alternative vendor options. By example, it is noted that reciprocating engine option is expected to comprise between 10-12 individual generators. This modelling has assumed a design of 10 generators, however, the installation of 12 generators possessing a similar total output and emission performance is not anticipated to materially influence ambient air quality outcomes.

In addition, the influence of design or location changes within the generator yard area are unlikely to be material when considered in the context of source-receptor distances which span several kilometres.

4.3.2 OXIDES OF NITROGEN (NO_x) AND CARBON MONOXIDE (CO)

 NO_x and CO emissions have been based on manufacturer's data in the majority of cases, and generic emission performance elsewhere. Reciprocating engine natural gas NO_x emissions have been based on the NO_x performance attained for BIPS 1 with distillate emissions assumed to vary by the ratio.

4.3.3 PARTICULATE MATTER, BENZENE, FORMALDEHYDE AND PAHS

US EPA AP-42 emission factors have been adopted where manufacture specific information was not available, as is the case for benzene, formaldehyde, PAHs and the condensable PM fraction. A summary of these factors is provided in **Table 4-4**. It is noted that manufacturer emission data for PM is limited to filterable particulate. Accordingly, PM emissions have been estimated based on manufacturer's data for the filterable fraction, supplemented by the US EPA AP-42 PM emission factors, (which represent an average of test data), for the condensable fraction. These fractions have been added to provide a total particulate matter emission rate.

The use of oxidation catalysts on the reciprocating engines is anticipated to provide a reduction of condensable material through oxidation of soluble organic fraction PM (MECA, 2015), thus resulting in a reduction against the uncontrolled emission factors featured in the US EPA (2006). As a conservative measure, this effect has not been incorporated into the emission estimation.

TABLE 4-4 ADOPTED US EPA AP-42 EMISSION FACTORS (LB/MMBTU)

Substance	Gas Turbir	ne Options	Reciprocating	Engine Option	
Substance	Natural Gas	Distillate Oil	Natural Gas ^(b)	Distillate Oil ^(c)	
$PM_{2.5}$, PM_{10} (condensable)	4.70E x 10 ⁻⁰³	7.20E x 10 ⁻⁰³	9.91E x 10 ⁻⁰³	7.70E x 10 ⁻⁰³	
Benzene	1.20 x 10 ⁻⁰⁵	5.50 x 10 ⁻⁰⁵	4.40 x 10 ⁻⁰⁴	7.76 x 10 ⁻⁰⁴	
Formaldehyde	7.10 × 10 ⁻⁰⁴	2.80 x 10 ⁻⁰⁴	N/A		
PAHs (B[a]P TEQ) ^(d)	9.00 x 10 ^{-07 (e)}	5.00 x 10 ^{-06 (e)}	1.67 x 10 ^{-07(d)}	1.39 x 10 ^{-04(d)}	

Notes:

(a) US EPA (2006) – 3.1 Stationary Gas Turbines

(b) US EPA (2006) – 3.2 Natural Gas Reciprocating Engine (4SLB) values adopted in absence of dual-fuel factors.

(c) US EPA (2006) – 3.4 Large Stationary Diesel and All Dual-Fuel Reciprocating Engines.

(d) PAH value converted to B(a)P equivalent using the Potency Equivalent Factors (PEFs) from the NSW Approved Methods (Table 7.2c)

(e) In absence of speciated PAHs or B(a)P TEQ, emission factor estimated as Total PAHs minus naphthalene. N/A – Not Applicable: Emission estimate based on BIPS 1 emission rate scaled by relative output (25 / 17.5 MW). It is noted that BIPS 1 used an oxidation catalyst to achieve this performance.

4.3.4 SULFUR DIOXIDE

SO₂ emission factors have been estimated based on conservation of mass principles, assuming the complete oxidation of fuel-bound sulfur into SO₂. Fuel-bound sulfur content has been defined by the following relevant fuel specifications:

- (AEMO, 2017) Gas Quality Guidelines, (Network notification threshold adopted); and
- (AG, 2019) *Fuel Quality Standards (Automotive Diesel) Determination 2019*, (Fuel standard maximum value adopted).

Table 4-5 and **Table 4-6** provide detail of the derivation of fuel-specific SO₂ emission factors for natural gas and distillate operation (respectively).

TABLE 4-5FUEL-SPECIFIC SO2 EMISSION FACTOR FOR NATURAL GAS

Parameter	Value	Units	Source / Basis
Sulfur content	50	mg/m³@15°C, 1 atm.	(AEMO, 2017)
Gas density	0.755	kg/m³	(AGL, 1995)
Sulfur content	66.2	mg/kg	Calculated
Energy density	51.4	MJ/kg	(AGL, 1995)
Sulfur content	1.29	mg/MJ	Calculated
SO ₂ emissions	2.57	g/GJ	

AGL 1995, Natural Gas Technical Data Handbook, AGL 1995.

TABLE 4-6FUEL-SPECIFIC SO2 EMISSION FACTOR FOR DISTILLATE OIL

Parameter	Value	Units	Source / Basis
Energy density	45.6	MJ/kg (HHV)	(DCCEEW, 2023)
Sulfur content	10.0	mg/kg	(AG, 2019)
	0.22	mg/MJ (HHV)	Calculated
SO ₂ emissions	0.44	g/GJ (HHV)	

4.3.5 EMISSION INVENTORY

- **Table 4-7** presents a summary of modelled emission parameters adopted for the various BIPS 2 plant options and existing BIPS 1 and TIPS B sources.
- **Table 4-8** presents emission calculations and applied emission factors for each pollutant, plant option and fuel.
- **Table 4-9** presents a summary of modelled emission rates.

TABLE 4-7 SUMMARY OF MODELLED EMISSION PARAMETERS

Option / Source ID	Source	Easting (kmE)*	Northing (kmN)*	Stack Height (mAGL)	Effective Diameter (m)	Exit Velocity (m/s) NG / DO	Exit Temp. (K) NG / DO	Base Elevation (mAHD)
BIPS 2 Plant Optic	ons		•					
E1	Stack A	273.564	6145.964	40.0	5.5	41 / 41	823 / 823	3.4
ET	Stack B	273.593	6145.944	40.0	5.5	41 / 41	823 / 823	
E2	Stack A	273.561	6145.922	35.0	6.5	40 / 40	821 / 796	
F1	Stack A	273.550	6145.972	42.0	7.0	43 / 43	898 / 898	
F2	Stack A	273.550	6145.972	38.0	7.9	38 / 38	872 / 872	
	Stack A	273.538	6145.949	18.7	5.7	28 / 27	712 / 717	
10	Stack B	273.530	6145.938	18.7	5.7	28 / 27	712 / 717	
AD	Stack C	273.572	6145.926	18.7	5.7	28 / 27	712 / 717	
	Stack D	273.563	6145.914	18.7	5.7	28 / 27	712 / 717	
	Cluster A (4 stacks)	273.545	6145.878	30.5	3.4	31 / 35	626 / 547	
RE	Cluster B (3 stacks)	273.579	6145.925	30.5	2.94	31 / 35	626 / 547	
	Cluster C (3 stacks)	273.593	6145.945	30.5	2.94	31 / 35	626 / 547	
Existing Sources (Included in Plant Scen	arios 2 and 3))					
	Cluster 1 (6 stacks)	273.450	6136.004	30.0	3.9	29 / 31	651 / 627	3.0
BIPS 1	Cluster 2 (6 stacks)	273.500	6145.969	30.0	3.9	29 / 31	651 / 627	
TIPS B	Multi-flue stack	273.363	6145.771	160	7.3	16.4 / -	627 / -	

Note: * Indicative location based on generic plant layouts - subject to change as part of detailed design.

TABLE 4-8 DETAILED EMISSION CALCULATIONS

D	E	1	E	2	F	1	F	2	A	D	R	E	11
Parameter	NG	DO	NG	DO	Units								
Exhaust Flow Calculation	7	1	1	1	1	1			1	1		1	<u>.</u>
Output*	150	150	200	200	280	280	330	330	70	70	25	25	MW
Thermal Efficiency	36.9%	36.9%	36.2%	34.5%	38.2%	38.2%	38%	38%	39.7%	37.0%	48.0%	42.6%	% (LHV)
	33.6%	35.2%	32.9%	32.9%	34.8%	36.4%	35%	36%	36.1%	35.2%	43.6%	40.5%	% (HHV)
Fuel Consumption	447	426	608	609	805	769	949	906	194	199	57	62	MW _{th} (HHV)
Reference Oxygen 'REF'					15	5%					7%		% (dry basis)
F-Factor**	2.34E-07	2.47E-07	2.35E-071	2.47E-07	dscm/J @ 0% O ₂								
	0.772	0.815	0.772	0.815	0.772	0.815	0.772	0.815	0.772	0.815	0.329	0.346	Nm³/MJ dry @ REF% O2
Exhaust Flow	345	348	470	496	622	627	733	739	150	162	19	21	Nm³/s dry @ REF O2
Emission Concentrations	5	•		•	<u>.</u>	•			÷	÷		<u>.</u>	•
NO _x	25	42	25	73	15	42	25	73	25	42	171	_4	ppmvd @ REF% O2
	51	86	51	150	31	86	51	150	51	86	350 ²	_4	mg/Nm ³ , dry, REF% O ₂
СО	30	30	80	80	30	30	80	80	50	22	364	56	ppmvd @ REF% O2
	38	38	100	100	38	38	100	100	62	28	455	70	mg/Nm ³ , dry, REF% O ₂
PM (Filterable)	5	10	5	10	5	10	5	10	10	20	5	20 ³	mg/Nm ³ , dry, REF% O ₂
Emission Factors							·						
PM (Condensable)	2.25	3.45	2.25	3.45	2.25	3.45	2.25	3.45	2.25	3.45	4.74	3.68	
Benzene	0.006	0.026	0.006	0.026	0.006	0.026	0.006	0.026	0.006	0.026	0.21	0.37	
Formaldehyde	0.340	0.134	0.340	0.134	0.340	0.134	0.340	0.134	0.340	0.134	_4	0.04	g/GJ (HHV)
PAHs⁵ as B(a)P TEQ	4.31E-04	2.39E-03	7.99E-05	3.10E-04									
SO ₂	2.57	0.44	2.57	0.44	2.57	0.44	2.57	0.44	2.57	0.44	2.46 ¹	0.44	

Notes: *Approval is sought for up to 280 MW of generation capacity. Options assessed range up to 330 MW.

**USEPA (2023)

¹Assumed to incorporate a blend of 95% natural gas with 5% (pilot) diesel.

²Assumed equivalent to BIPS 1 performance.

³Generic assumption based on BIPS 1 test data with margin provided to account for variability.

⁴Manufacturer specification not used - emissions scaled from PEL(2017a).

⁵AP-42 emission factors used in conjunction with B(a)P TEQ conversion factors.

TABLE 4-9 SUMMARY OF MODELLED EMISSION RATES

Option /	F 1			Emission R	ate (g/s per indi	vidual stack)		
Source ID	Fuel	NOx	со	SO2	РМ	Formaldehyde	Benzene	PAHs
F 4	Natural Gas	17.7	12.9	1.15	2.73	0.15	2.6E-03	1.9E-04
E1	Distillate Oil	29.9	13.0	0.19	4.95	0.06	0.01	1.0E-03
F.2	Natural Gas	24.1	47.0	1.56	3.72	0.21	3.5E-03	2.6E-04
E2	Distillate Oil	74.3	49.6	0.27	7.06	0.08	0.02	1.5E-03
F1	Natural Gas	19.1	23.3	2.07	4.92	0.27	4.6E-03	3.5E-04
	Distillate Oil	54.0	23.5	0.34	8.92	0.10	0.02	1.8E-03
	Natural Gas	37.6	73.3	2.44	5.80	0.32	5.5E-03	4.1E-04
F2	Distillate Oil	110.5	73.9	0.40	10.51	0.12	0.02	2.2E-03
	Natural Gas	7.7	9.3	0.50	1.93	0.07	1.1E-03	8.4E-05
AD -	Distillate Oil	13.9	4.5	0.09	3.92	0.03	5.2E-03	4.8E-04
5-	Natural Gas	6.6	8.6	0.14	0.37	0.18	0.01	4.6E-06
RE	Distillate Oil	9.4	1.5	0.03	0.65	2.3E-03	0.02	1.9E-05
DIDC 1	Natural Gas	22.5	3.3	0.65	1.3	0.76	0.19	2.3E-06
BIPS 1	Distillate Oil	30.5	2.5	0.06	4.6	0.01	0.08	6.7E-05
TIPS B	Natural Gas	167.3	10.35	0.428	5.48	0.05	1.5E-03	5.3E-04

Note: All emission sources modelled on a continuous basis for all hours of the model run.

4.4 BUILDING DOWNWASH

Aerodynamic wakes are produced as air travels over irregular objects such as building structures. Within these wakes, there is a high level of turbulence and vertical mixing. In instances where exhaust plumes interact with these wakes, pollutants can be mixed downward to ground level, producing locally elevated concentrations, and otherwise reducing the scale of plume rise at distances downwind of the source. Within dispersion modelling, this effect is referred to as building downwash.

For this study, emission sources were screened for potential interaction with building wakes, where wakes extend:

- by a distance of 5 x L from the leeward edge of a wake producing structure, where L is the lesser of the structure height or the projected structure width.
- to a height of 2.5 times the height of the structure.

The proposed site layouts for BIPS 2 power generation options feature a range of stack heights (18.7 – 42 mAHD) and various building orientations within the zone of influence. The RE option has been nominated for visual representation with the current site layout, including the BIPS 1 generator hall and TIPS B building, presented in **Figure 4-1**.

It should be noted that the plant design will vary as it progresses, and this approach allows downwash effects to be incorporated.

FIGURE 4-1 VISUAL REPRESENTATION OF MODEL SOURCES (RED) AND BUILDING DOWNWASH STRUCTURES (BLUE VOLUME)

4.5 BACKGROUND MONITORING DATA

The background pollutant concentrations have been referenced from the monitoring data sources outlined in **Section 3.4**. Data from the year 2023 has been applied as consistent with the meteorological dataset. This is with the exception of PM_{2.5} and PM₁₀, which has adopted the 5-year maximum statistics, in order to allow for variability in background between wet and dry years, noting that conditions in 2023 were wetter than those observed in 2019.

Table 4-10 provides a summary of the adopted background data.

Pollutant	Averaging Period	Adopted Background Concentration	SA EPA Criterion
NO	1-hour	Time-varying	164
NO ₂	Annual	11	30
<u></u>	1-hour	309	31,240
СО	8-hour	123	11,250
60	1-hour	14	290
SO ₂	24-hour	9	60
DM	24-hour	101,2	25
PM _{2.5}	Annual	5.9 ²	8
PM ₁₀	24-hour	361,2	50
Formaldehyde	3-minutes	n/a	44
D	3-minutes	n/a	58
Benzene	Annual	n/a	10
DALLA	3-minutes	n/a	0.8
PAHs	Annual	n/a	0.0003

TABLE 4-10 SUMMARY OF ADOPTED BACKGROUND DATA (µg/m³)

Notes: n/a – Pollutant assessed on an incremental basis. ¹ 90th percentile, ² Maximum over the past 5 years.

4.6 NO₂ CONVERSION

Oxides of nitrogen (NO_x) are emitted primarily as nitric oxide (NO) and NO₂. At the point of emission, NO_x will primarily comprise NO which has the ability to be progressively oxidised to NO₂ by atmospheric ozone over periods in the time scale of hours. Given that NO₂ is the principal species in terms of potential human health effects, a method for the estimation of NO₂ conversion is required.

For this assessment, the Ozone Limiting Method (OLM) has been used to estimate NO₂ concentrations, as this allows a conservative representation of conversion.

In its default form, the OLM assumes that 10% of the NO_x emissions occur as NO₂, with the remaining NO being converted over to NO₂ until all of the ambient ozone is consumed. In this respect, the conversion is limited by the availability of ozone. Equation 4-1 provides the basis for the OLM calculation applied in this assessment:

$$NO_2 tot = \{0.1 \times NO_x p\} + minimum\{[0.9 \times NO_x p] \text{ or } [(46/48) \times O_3 bg]\} + NO_2 bg$$

EQUATION 4-1

Where: $NO_2 tot = \text{total NO}_2$ concentration inclusive of project and background ($\mu g/m^3$)

- $NO_x p$ = predicted NO_x concentration (µg/m³)
- $O_3 bg$ = measured background ozone concentration ($\mu g/m^3$)
- NO_2bg = background NO₂ concentration (µg/m³)

The OLM calculations were performed on an hourly basis for each hour of the model run. Hourly NO₂ predictions were processed using the OLM in conjunction with corresponding hourly ozone and NO₂ background data.

Background concentrations have been compiled as paired ozone and NO₂ data from hourly monitoring data from a combination of SA EPA AQMS locations, including, Elizabeth, North Haven and Northfield. The following approach:

- North Haven AQMS (located to the west of the site) has been used when winds were blowing from the easterly directions;
- Northfield (located to the southeast of the site) has been used when winds were blowing from the northwestern quadrant; and
- Elizabeth (located to the northeast of the site) has been used when winds were blowing from the southwestern quadrant.
- North Haven data has been used when data from other stations is missing.

This approach provides an hourly background dataset that prioritises data from downwind locations, and thus best incorporates cumulative impacts from other sources within the region. Using this approach, the ozone and NO_2 data were both 99.9% complete for the year 2023 (8,749 out of 8,760 hours).

4.7 MODEL RECEPTORS

Receptors have been assigned within the model to provide points at which model concentration outputs are generated. The model has used both gridded and discrete receptors as consistent with PEL (2017a), and include the following:

- Gridded receptors have been included at 250 metre resolution on a 30 km x 30 km receptor grid equating to a total of 14,641 gridded receptors. This domain is considered adequate for the capture of peak model predictions; and
- 16 discrete receptors have been allocated to suburbs across the gridded modelling domain.

Table 4-11 provides a summary of modelled discrete receptor locations, while Figure 4-2shows the gridded receptor domain extent and discrete receptor locations.

TABLE 4-11 SUMMARY OF MODELLED SUBURBAN DISCRETE RECEPTOR LOCATIONS

December ID	Location (GDA	Base Elevation	
Receptor ID	Easting (kmE)	Northing (kmN)	(mAHD)
R01	280.771	6132.259	60
R02	282.341	6138.363	64
R03	280.048	6152.935	13
R04	278.009	6137.500	15
R05	286.808	6155.468	41
R06	271.118	6132.798	6
R07	287.402	6141.710	105
R08	287.739	6134.181	131
R09	270.945	6147.231	8
R10	281.852	6147.498	14
R11	281.688	6142.895	25
R12	284.576	6150.698	40
R13	269.900	6141.889	11
R14	270.746	6137.758	7
R15	277.676	6140.990	7
R16	288.350	6146.787	188

4.8 PREDICTIONS FOR SUB-HOURLY AVERAGING PERIODS

The assessment of formaldehyde, benzene and PAHs requires estimation of pollutant concentrations over 3-minute averaging periods.

Hourly averaged model predictions have been converted to 3-minute averaging periods using the power law conversion provided in the EPA Victoria draft guideline *Guidance notes for using the regulatory air pollution model AERMOD in Victoria* (EPAV, 2013). This conversion accounts for fluctuations in pollutant levels within the larger averaging period and is provided in Equation 4-2.

 $C_{n\,min} = C_{1\,hour} \times (60/n)^{0.2}$

EQUATION 4-2

Where:

 $C_{n hour} = 1$ -hour average prediction $C_{n min} = n$ minute average prediction

5. ASSESSMENT RESULTS

The dispersion modelling results have been processed to allow comparison against respective air quality impact assessment criteria. Model results have been shown in tabulated form and as contour isopleths across the 30 km x 30 km gridded modelling domain.

Predictions have been classified as:

- Incremental: The predicted contribution from the modelling outputs; and
- **Cumulative**: The sum of model predictions and regional background concentrations (which are time-varying in the case of NO₂).

Assessment criteria for NO₂, CO, SO₂, PM₁₀ and PM_{2.5} apply on a cumulative basis. All results are presented in units of μ g/m³.

Results Tables

The results tables have been compiled to show:

- Predictions at each of the 16 discrete receptor locations;
- Maximum gridded receptor predictions, inclusive of all gridded receptors except those located overwater; and
- In some cases, PS1 and PS3 contour isopleths have been reviewed to identify the maximum sensitive gridded receptor prediction (shown in square brackets). This refinement excludes predictions that may occur on the AGL site or nearby vacant land.

Contour Isopleths

Noting the range of plant options, plant scenarios, pollutants, averaging periods and cumulative and incremental statistics, contour isopleths of modelling results have been limited to the following plant scenarios PS1 and PS3, inclusive of the following:

- Maximum 1-hour Incremental NO₂;
- Maximum 1-hour Cumulative NO₂;
- Maximum 24-hour incremental PM_{2.5}; and
- Maximum 3-minute incremental formaldehyde (reciprocating engine option).

This approach provides an opportunity to differentiate between various predictions, whilst also understanding the spatial characteristics of worst-case modelling predictions.

It is noted that annual average $PM_{2.5}$ contours have not been provided due to all BIPS 2 incremental contributions being less than or equal to 0.1 μ g/m³, even with the assumption of continuous operation.

5.1 NITROGEN DIOXIDE (NO₂)

Table 5-1 to **Table 5-3** present the incremental NO₂ predictions for each plant scenario. Total NO_x predictions have been shown in brackets within these results.

Table 5-4 to **Table 5-6** present the maximum 1-hour cumulative NO₂ predictions (i.e. inclusive of background) for each plant scenario, with assessment against relevant impact assessment criteria for all scenarios. Gridded receptor predictions for PS1 and PS3 have been reviewed to identify the maximum cumulative prediction at a sensitive location (shown in square brackets).

Table 5-7 to **Table 5-9** present the annual average NO₂ predictions for each plant scenario, with assessment against relevant impact assessment criteria.

Figure 5-1 to **Figure 5-6** present the PS1 maximum 1-hour average incremental NO₂ results for each plant option. **Figure 5-7** to **Figure 5-12** present the PS3 maximum 1-hour average cumulative NO₂ results.

It is noted that cumulative 1-hour NO₂ predictions have included a time-varying background. In many scenarios, the peak predictions are equal to the peak background concentration of 82 μ g/m³, indicating minimal impact at a given receptor during the time at which the peak background concentration was reported in conjunction with lower cumulative impacts for all other hours of the model run.

All NO₂ predictions are within respective assessment criteria:

• A peak 1-hour sensitive receptor cumulative NO₂ prediction of 126 µg/m³ reported for distillate operation of the reciprocating engine plant option under Plant Scenario 3.

This concentration equates to 76% of the 164 μ g/m³ criterion and is based on continuous operation of BIPS 1 and BIPS 2 on distillate fuel, and TIPS B operating on natural gas, with all plant operating at 100% of available plant load.

This represents a conservative basis for assessment given the intermittent operation of these facilities and use of natural gas, for which peak prediction was approximately 20 μ g/m³ lower, and close to the existing ambient background concentrations.

 Annual average NO₂ predictions are low relative to criterion of 30 μg/m³, with maximum cumulative predictions less than half of the standard despite the assumption of continuous operation.

	E	1	E2		F	1	F	2	A	D	R	E
Receptor	NG	DO	NG	DO	NG	DO	NG	DO	NG	DO	NG	DO
R01	6 (6)	10 (10)	4 (4)	12 (12)	2 (2)	6 (6)	8 (8)	23 (24)	13 (13)	24 (24)	31 (45)	36 (66)
R02	9 (9)	16 (16)	3 (3)	9 (9)	2 (2)	6 (6)	9 (9)	26 (28)	20 (20)	36 (37)	36 (47)	41 (65)
R03	8 (8)	13 (13)	4 (4)	14 (14)	2 (2)	6 (6)	8 (8)	23 (24)	18 (18)	23 (43)	31 (32)	46 (46)
R04	11 (11)	18 (18)	4 (4)	13 (13)	2 (2)	6 (6)	12 (12)	22 (37)	21 (21)	30 (39)	44 (92)	51 (131)
R05	3 (3)	5 (5)	2 (2)	5 (5)	1 (1)	3 (3)	5 (5)	14 (14)	9 (9)	17 (17)	30 (30)	46 (46)
R06	8 (8)	13 (13)	5 (5)	13 (16)	4 (4)	10 (10)	8 (8)	21 (24)	16 (16)	19 (30)	42 (86)	57 (122)
R07	5 (5)	8 (8)	3 (3)	9 (9)	2 (2)	5 (5)	10 (10)	29 (29)	11 (14)	20 (24)	36 (74)	39 (110)
R08	3 (3)	5 (5)	2 (2)	7 (7)	2 (2)	5 (5)	8 (8)	23 (23)	7 (7)	12 (12)	29 (29)	38 (43)
R09	17 (17)	28 (28)	13 (13)	30 (39)	6 (6)	18 (18)	24 (24)	70 (70)	27 (27)	49 (49)	49 (87)	63 (186)
R10	10 (10)	17 (17)	4 (4)	14 (14)	2 (2)	6 (6)	10 (10)	29 (29)	19 (24)	23 (45)	24 (31)	34 (43)
R11	8 (8)	13 (13)	4 (4)	12 (12)	2 (2)	7 (7)	8 (8)	25 (25)	16 (16)	30 (31)	34 (50)	40 (68)
R12	5 (5)	9 (9)	4 (4)	12 (12)	4 (4)	11 (11)	6 (6)	19 (19)	34 (36)	36 (62)	30 (30)	41 (43)
R13	6 (6)	10 (10)	3 (3)	8 (8)	2 (2)	5 (5)	8 (10)	24 (29)	18 (31)	31 (56)	39 (95)	54 (133)
R14	9 (9)	13 (15)	6 (6)	13 (17)	4 (4)	12 (12)	8 (25)	23 (72)	18 (23)	33 (42)	44 (75)	58 (115)
R15	10 (10)	16 (16)	6 (6)	17 (18)	2 (2)	7 (7)	11 (12)	30 (36)	17 (18)	28 (41)	54 (94)	57 (120)
R16	4 (4)	7 (7)	3 (3)	10 (10)	2 (2)	6 (6)	12 (12)	24 (36)	16 (16)	25 (25)	25 (25)	36 (36)
Maximum b	y Receptor	r Type										
Discrete	17 (17)	28 (28)	13 (13)	30 (39)	6 (6)	18 (18)	24 (24)	70 (70)	34 (36)	49 (49)	54 (94)	63 (186)
Gridded*	64 (64)	84 (108)	42 (42)	95 (118)	24 (24)	66 (66)	44 (44)	94 (130)	59 (59)	88 (88)	101 (135)	111 (200)

TABLE 5-1 MAXIMUM 1-HOUR AVERAGE INCREMENTAL NO₂ PREDICTIONS – PLANT SCENARIO 1 (BIPS 2) (µg/m³)

Notes: Total NO_x (i.e. NO_x as NO_2) predictions have been shown in brackets.

*Maximum over land gridded receptor prediction, inclusive of the site and other areas where sensitive receptors may not be present.

TABLE 5-2 MAXIMUM 1-HOUR AVERAGE INCREMENTAL NO₂ PREDICTIONS – PLANT SCENARIO 2 (BIPS 2 + BIPS 1) (µg/m³)

Decenter	E	1	E2		F	1	F	2	A	D	RE	
Receptor	NG	DO	NG	DO	NG	DO	NG	DO	NG	DO	NG	DO
R01	17 (17)	24 (24)	17 (17)	24 (24)	17 (17)	24 (24)	17 (17)	24 (24)	17 (17)	29 (30)	32 (56)	36 (81)
R02	18 (18)	24 (24)	18 (18)	24 (24)	18 (18)	24 (24)	18 (18)	26 (28)	23 (23)	36 (37)	36 (48)	41 (65)
R03	21 (21)	30 (30)	17 (17)	31 (31)	16 (16)	22 (22)	18 (18)	33 (33)	23 (26)	34 (50)	33 (38)	46 (50)
R04	18 (22)	25 (32)	15 (20)	21 (29)	15 (20)	21 (28)	15 (22)	25 (37)	24 (27)	31 (43)	44 (95)	51 (134)
R05	9 (9)	12 (14)	9 (9)	12 (12)	9 (9)	12 (12)	9 (9)	14 (14)	11 (12)	17 (20)	34 (34)	48 (51)
R06	13 (18)	16 (28)	13 (15)	14 (30)	13 (14)	14 (25)	13 (15)	21 (29)	16 (18)	22 (30)	42 (86)	57 (122)
R07	9 (9)	12 (12)	8 (8)	12 (12)	8 (8)	10 (10)	10 (10)	29 (29)	11 (15)	20 (25)	36 (74)	39 (111)
R08	7 (7)	10 (10)	7 (7)	10 (10)	7 (7)	10 (10)	8 (8)	23 (23)	9 (9)	17 (17)	29 (29)	38 (43)
R09	38 (40)	40 (52)	38 (40)	39 (52)	38 (40)	39 (52)	38 (40)	73 (73)	39 (50)	60 (72)	65 (100)	67 (186)
R10	23 (23)	36 (36)	18 (18)	33 (33)	14 (14)	21 (21)	18 (18)	33 (33)	23 (24)	36 (45)	34 (44)	47 (61)
R11	14 (14)	20 (20)	13 (13)	18 (18)	13 (13)	18 (18)	13 (13)	29 (29)	19 (20)	34 (34)	34 (50)	40 (68)
R12	11 (11)	16 (16)	8 (9)	13 (13)	8 (8)	13 (13)	9 (9)	22 (22)	34 (36)	36 (62)	36 (36)	50 (50)
R13	16 (16)	21 (21)	16 (16)	21 (21)	16 (16)	21 (21)	16 (16)	24 (29)	21 (31)	31 (56)	39 (104)	54 (144)
R14	16 (20)	16 (30)	16 (16)	16 (33)	16 (16)	16 (27)	18 (25)	26 (72)	19 (24)	33 (42)	44 (78)	58 (119)
R15	17 (20)	23 (30)	16 (16)	23 (31)	15 (15)	20 (20)	17 (17)	30 (36)	19 (22)	29 (46)	54 (94)	57 (120)
R16	25 (25)	34 (34)	25 (25)	34 (34)	25 (25)	33 (33)	27 (27)	39 (42)	28 (28)	39 (39)	36 (36)	49 (49)
Maximum L	by Receptor	Туре										
Discrete	38 (40)	40 (52)	38 (40)	39 (52)	38 (40)	39 (52)	38 (40)	73 (73)	39 (50)	60 (72)	65 (100)	67 (186)
Gridded*	137 (203)	144 (290)	131 (192)	145 (278)	124 (192)	142 (245)	102 (192)	136 (245)	103 (193)	136 (249)	113 (248)	137 (341)

Notes: Total NO_x (i.e. NO_x as NO_2) predictions have been shown in brackets.

*Maximum gridded receptor prediction over land, inclusive of the site and other areas where sensitive receptors may not be present.

TABLE 5-3	MAXIMUM 1-HOUR AVERAGE INCREMENTAL NO ₂ PREDICTIONS – PLANT SCENARIO 3	$(BIPS 2 + BIPS 1 + TIPS B) (\mu g/m^3)$
-----------	---	--

D	E	E1		E2		1	F	2	A	D	R	E
Receptor	NG	DO	NG	DO	NG	DO	NG	DO	NG	DO	NG	DO
R01	26 (26)	29 (30)	23 (23)	29 (31)	22 (22)	25 (25)	21 (21)	24 (25)	22 (22)	29 (30)	32 (56)	36 (81)
R02	24 (24)	27 (27)	22 (22)	28 (28)	22 (22)	26 (26)	24 (24)	32 (32)	24 (24)	36 (37)	36 (48)	41 (65)
R03	41 (50)	42 (60)	40 (47)	42 (60)	40 (44)	41 (52)	40 (48)	49 (62)	41 (52)	42 (64)	43 (62)	54 (74)
R04	26 (34)	31 (40)	27 (31)	34 (41)	25 (29)	28 (34)	28 (28)	37 (37)	25 (30)	33 (43)	44 (95)	51 (134)
R05	22 (22)	25 (25)	20 (20)	24 (24)	20 (20)	23 (23)	21 (21)	27 (27)	22 (22)	25 (25)	34 (34)	48 (51)
R06	23 (39)	32 (49)	20 (37)	28 (52)	20 (35)	24 (46)	20 (36)	30 (51)	20 (40)	26 (51)	42 (86)	57 (122)
R07	21 (21)	24 (24)	20 (20)	23 (23)	20 (20)	22 (22)	20 (20)	29 (29)	21 (21)	23 (25)	36 (74)	39 (111)
R08	18 (18)	20 (20)	18 (18)	20 (20)	18 (18)	19 (19)	18 (18)	23 (23)	18 (18)	21 (21)	29 (29)	38 (43)
R09	67 (102)	73 (114)	67 (93)	80 (119)	67 (88)	79 (93)	80 (86)	84 (131)	65 (110)	69 (131)	66 (100)	69 (186)
R10	39 (39)	45 (45)	36 (36)	45 (45)	34 (34)	39 (39)	35 (35)	41 (41)	41 (41)	52 (52)	47 (51)	56 (68)
R11	27 (27)	33 (33)	26 (26)	33 (33)	24 (24)	28 (28)	28 (28)	45 (45)	35 (35)	50 (50)	34 (50)	40 (68)
R12	29 (31)	30 (36)	29 (29)	30 (34)	29 (29)	30 (33)	29 (29)	33 (35)	34 (36)	36 (62)	38 (39)	50 (51)
R13	42 (42)	44 (49)	37 (37)	41 (41)	37 (37)	40 (40)	37 (37)	39 (39)	44 (46)	45 (57)	44 (108)	54 (147)
R14	24 (44)	27 (55)	21 (41)	26 (57)	20 (39)	23 (51)	22 (40)	27 (72)	23 (44)	33 (57)	44 (78)	58 (119)
R15	33 (33)	38 (41)	31 (31)	39 (42)	31 (31)	35 (35)	38 (38)	57 (57)	34 (35)	38 (46)	54 (94)	57 (120)
R16	25 (25)	34 (34)	25 (25)	34 (34)	25 (25)	33 (33)	27 (27)	39 (49)	28 (28)	39 (39)	36 (36)	49 (49)
Maximum l	by Receptor	Туре										
Discrete	67 (102)	73 (114)	67 (93)	80 (119)	67 (88)	79 (93)	80 (86)	84 (131)	65 (110)	69 (131)	66 (100)	69 (186)
Gridded*	142 (249)	149 (330)	140 (232)	150 (322)	140 (217)	147 (268)	138 (208)	141 (245)	138 (216)	141 (255)	139 (251)	143 (341)

Notes: Total NO_x (i.e. NO_x as NO₂) predictions have been shown in brackets.

*Maximum gridded receptor prediction over land, inclusive of the site and other areas where sensitive receptors may not be present.

TABLE 5-4 MAXIMUM 1-HOUR AVERAGE CUMULATIVE NO₂ PREDICTIONS- PLANT SCENARIO 1 (BIPS 2) (µg/m³)

D	E1		E2		F1		F	-2	A	D	RE		Max. All
Receptor	NG	DO	NG	DO	NG	DO	NG	DO	NG	DO	NG	DO	Scenarios
R01													
R02													
R03													
R04													
R05													
R06													
R07													
R08						82 (All	results)						82
R09													
R10													
R11													
R12													
R13													
R14													
R15													
R16													
Maximum l	by Recept	or Type											
Discrete						82 (All	results)						82
Gridded*	82	90	82	101	82	82	84	98	86	92	107	126	126
Criterion													164

Note: *Maximum gridded receptor prediction over land, inclusive of the site and other areas where sensitive receptors may not be present.

TABLE 5-5 MAXIMUM 1-HOUR AVERAGE CUMULATIVE NO₂ PREDICTIONS- PLANT SCENARIO 2 (BIPS 2 + BIPS 1) (µg/m³)

Desertes	E1		E2		F1		F	2	A	D	R	E	Max. All
Receptor	NG	DO	NG	DO	NG	DO	NG	DO	NG	DO	NG	DO	Scenarios
R01													
R02													
R03													
R04													
R05													
R06													
R07													
R08						82 (All	results)						82
R09													
R10													
R11													
R12													
R13													
R14													
R15													
R16													
Maximum L	y Recept	or Type											
Discrete						82 (All	results)						82
Gridded*	143	150	137	151	130	148	108	142	109	142	119	143	151
Criterion													164

Note: *Maximum gridded receptor prediction over land, inclusive of the site and other areas where sensitive receptors may not be present.

Describe	E1		E2		F1		F2		AD		RE		Max. All
Receptor	NG	DO	NG	DO	NG	DO	NG	DO	NG	DO	NG	DO	Scenarios
R01	82	82	82	82	82	82	82	82	82	82	82	82	82
R02	82	82	82	82	82	82	82	82	82	82	82	82	82
R03	82	82	82	82	82	82	82	82	82	82	82	82	82
R04	82	82	82	82	82	82	82	82	82	82	82	82	82
R05	82	82	82	82	82	82	82	82	82	82	82	82	82
R06	82	82	82	82	82	82	82	82	82	82	82	82	82
R07	82	82	82	82	82	82	82	82	82	82	82	82	82
R08	82	82	82	82	82	82	82	82	82	82	82	82	82
R09	82	82	82	82	82	82	82	87	82	82	82	82	87
R10	82	82	82	82	82	82	82	82	82	82	82	82	82
R11	82	82	82	82	82	82	82	82	82	82	82	82	82
R12	82	82	82	82	82	82	82	82	82	82	82	82	82
R13	82	82	82	82	82	82	82	82	82	82	82	82	82
R14	82	82	82	82	82	82	82	82	82	82	82	82	82
R15	82	82	82	82	82	82	82	82	82	82	82	82	82
R16	82	82	82	82	82	82	82	82	82	82	82	82	82
Maximum	by Recept	or Type	1		1		1	1			1	1	
Discrete	82	82	82	82	82	82	82	87	82	82	82	82	87
Gridded*	148 [89]	155 [91]	147 [89]	156 [93]	146 [87]	154 [91]	144 [87]	147 [94]	144 [89]	147 [93]	145 [105]	149 [126]	[126]
Criterion													164

Notes: *Maximum gridded receptor prediction over land, inclusive of the site and other areas where sensitive receptors may not be present. Maximum gridded sensitive receptor predictions shown in square brackets.

TABLE 5-7 ANNUAL AVERAGE NO₂ PREDICTIONS – PLANT SCENARIO 1 (BIPS 2) (µg/m³)

Receptor	E1		E2		F1		F2		AD		RE		Max. All
	NG	DO	NG	DO	NG	DO	NG	DO	NG	DO	NG	DO	Scenarios
R01	<0.1	0.1	<0.1	0.1	<0.1	<0.1	0.1	0.2	0.1	0.2	0.3	0.4	0.4
R02	<0.1	0.1	<0.1	0.1	<0.1	<0.1	0.1	0.2	0.1	0.2	0.3	0.4	0.4
R03	0.1	0.1	<0.1	0.1	<0.1	0.1	<0.1	0.1	0.1	0.2	0.6	0.9	0.9
R04	0.1	0.1	<0.1	0.1	<0.1	0.1	0.1	0.3	0.1	0.3	0.5	0.6	0.6
R05	<0.1	0.1	<0.1	0.1	<0.1	<0.1	<0.1	0.1	0.1	0.1	0.2	0.3	0.3
R06	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	0.2	0.1	0.2	0.3	0.4	0.4
R07	<0.1	0.1	<0.1	0.1	<0.1	<0.1	0.1	0.2	0.1	0.1	0.2	0.2	0.2
R08	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	0.2	0.1	0.1	0.1	0.2	0.2
R09	0.1	0.1	<0.1	0.1	<0.1	0.1	0.1	0.2	0.1	0.3	0.7	1.0	1.0
R10	<0.1	0.1	<0.1	0.1	<0.1	<0.1	<0.1	0.1	0.1	0.2	0.4	0.6	0.6
R11	<0.1	0.1	<0.1	0.1	<0.1	<0.1	0.1	0.1	0.1	0.2	0.3	0.4	0.4
R12	<0.1	0.1	<0.1	0.1	<0.1	<0.1	0.1	0.2	0.1	0.2	0.3	0.4	0.4
R13	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	0.2	0.1	0.3	0.6	0.8	0.8
R14	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	0.1	0.2	0.1	0.2	0.5	0.6	0.6
R15	0.1	0.1	<0.1	0.1	<0.1	0.1	0.1	0.3	0.2	0.3	0.5	0.7	0.7
R16	<0.1	0.1	<0.1	0.1	<0.1	<0.1	0.1	0.2	0.1	0.2	0.2	0.3	0.3
Maximum	by Recept	or Type											·
Discrete	0.1	0.1	0.0	0.1	0.0	0.1	0.1	0.3	0.2	0.3	0.7	1.0	1.0
Gridded*	0.5	0.8	0.3	0.8	0.1	0.4	0.1	0.3	0.2	0.4	1.3	1.8	1.8
Assessmer	nt Against	Criterion											
Background													10.8
Maximum C	Cumulative												12.6
Criterion													30

Note: *Maximum gridded receptor prediction over land, inclusive of the site and other areas where sensitive receptors may not be present.

TABLE 5-8 ANNUAL AVERAGE NO₂ PREDICTIONS – PLANT SCENARIO 2 (BIPS 2 + BIPS 1) (µg/m³)

Decenter	E1		E2		F1		F2		AD		RE		Max. All
Receptor	NG	DO	NG	DO	NG	DO	NG	DO	NG	DO	NG	DO	Scenarios
R01	0.1	0.2	0.1	0.2	0.1	0.2	0.2	0.3	0.2	0.3	0.4	0.5	0.5
R02	0.1	0.2	0.1	0.2	0.1	0.2	0.2	0.4	0.2	0.3	0.4	0.5	0.5
R03	0.3	0.5	0.3	0.4	0.3	0.4	0.3	0.5	0.4	0.6	0.9	1.2	1.2
R04	0.2	0.3	0.2	0.3	0.2	0.2	0.2	0.5	0.3	0.4	0.6	0.8	0.8
R05	0.1	0.2	0.1	0.2	0.1	0.2	0.1	0.3	0.2	0.3	0.3	0.5	0.5
R06	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.3	0.2	0.3	0.3	0.5	0.5
R07	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.2	0.2	0.3	0.3
R08	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.2	0.2	0.3	0.3
R09	0.2	0.3	0.2	0.3	0.2	0.3	0.2	0.4	0.3	0.5	0.9	1.2	1.2
R10	0.2	0.3	0.2	0.3	0.2	0.2	0.2	0.3	0.3	0.4	0.6	0.8	0.8
R11	0.2	0.2	0.1	0.2	0.1	0.2	0.2	0.3	0.2	0.3	0.4	0.6	0.6
R12	0.1	0.2	0.1	0.2	0.1	0.2	0.2	0.3	0.2	0.3	0.4	0.5	0.5
R13	0.1	0.2	0.1	0.2	0.1	0.1	0.2	0.3	0.2	0.4	0.7	0.9	0.9
R14	0.1	0.2	0.1	0.2	0.1	0.2	0.2	0.3	0.2	0.4	0.5	0.7	0.7
R15	0.2	0.3	0.2	0.3	0.2	0.3	0.3	0.5	0.3	0.5	0.7	0.9	0.9
R16	0.2	0.2	0.2	0.2	0.1	0.2	0.2	0.3	0.2	0.3	0.3	0.5	0.5
Maximum	by Recept	tor Type									1	ļ	
Discrete	0.3	0.5	0.3	0.4	0.3	0.4	0.3	0.5	0.4	0.6	0.9	1.2	1.2
Gridded*	2.9	3.6	2.8	3.7	2.7	3.4	2.6	3.3	2.7	3.4	3.1	3.9	3.9
Assessmer	nt Against	t Criterion											
Background													10.8
Maximum C	umulative												14.7
Criterion													30

Note: *Maximum gridded receptor prediction over land, inclusive of the site and other areas where sensitive receptors may not be present.

TABLE 5-9 ANNUAL AVERAGE NO₂ PREDICTIONS – PLANT SCENARIO 3 (BIPS 2 + BIPS 1 + TIPS B) (µg/m³)

Describe	E1		E2		F1		F2		AD		RE		Max. All
Receptor	NG	DO	NG	DO	NG	DO	NG	DO	NG	DO	NG	DO	Scenarios
R01	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.5	0.3	0.4	0.5	0.6	0.6
R02	0.3	0.4	0.3	0.4	0.3	0.4	0.4	0.6	0.4	0.5	0.6	0.7	0.7
R03	0.6	0.8	0.6	0.8	0.6	0.7	0.6	0.8	0.7	0.9	1.2	1.5	1.5
R04	0.4	0.5	0.4	0.5	0.4	0.4	0.5	0.7	0.5	0.6	0.8	1.0	1.0
R05	0.3	0.4	0.3	0.4	0.3	0.3	0.3	0.4	0.3	0.4	0.5	0.6	0.6
R06	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.4	0.2	0.3	0.4	0.5	0.5
R07	0.2	0.3	0.2	0.3	0.2	0.3	0.3	0.4	0.3	0.4	0.4	0.5	0.5
R08	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.4	0.2	0.3	0.3	0.4	0.4
R09	0.4	0.5	0.4	0.5	0.4	0.5	0.4	0.6	0.5	0.7	1.1	1.4	1.4
R10	0.4	0.5	0.4	0.5	0.4	0.4	0.4	0.5	0.4	0.6	0.8	1.0	1.0
R11	0.3	0.4	0.3	0.4	0.3	0.4	0.3	0.5	0.4	0.5	0.6	0.7	0.7
R12	0.4	0.4	0.3	0.4	0.3	0.4	0.4	0.5	0.4	0.5	0.6	0.7	0.7
R13	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.4	0.3	0.5	0.8	1.0	1.0
R14	0.2	0.3	0.2	0.3	0.2	0.3	0.3	0.4	0.3	0.5	0.6	0.8	0.8
R15	0.5	0.6	0.5	0.6	0.5	0.5	0.5	0.8	0.6	0.8	1.0	1.2	1.2
R16	0.3	0.4	0.3	0.4	0.3	0.4	0.3	0.5	0.4	0.5	0.5	0.6	0.6
Maximum	by Recept	or Type											
Discrete	0.6	0.8	0.6	0.8	0.6	0.7	0.6	0.8	0.7	0.9	1.2	1.5	1.5
Gridded*	3.3 [0.7]	4.0 [0.8]	3.2 [0.7]	4.0 [0.8]	3.2 [0.6]	3.8 [0.8]	3.1 [0.7]	3.7 [0.8]	3.2 [0.8]	3.8 [1.0]	3.6 [1.3]	4.3 [1.7]	[1.7]
Assessme	nt Against	Criterion											
Background	t												10.8
Maximum (Cumulative												12.5
Criterion													30

Notes: *Maximum gridded receptor prediction over land, inclusive of the site and other areas where sensitive receptors may not be present. Maximum gridded sensitive receptor predictions shown in square brackets.

FIGURE 5-1 PLANT OPTION E1: MAXIMUM 1-HOUR AVERAGE INCREMENTAL NO₂ PREDICTIONS – PLANT SCENARIO 1 (BIPS 2) (µg/m³)

Notes: Contour levels 10, 20, 50 μ g/m³. Cumulative criterion: 164 μ g/m³.

FIGURE 5-2 PLANT OPTION E2: MAXIMUM 1-HOUR AVERAGE INCREMENTAL NO₂ PREDICTIONS – PLANT SCENARIO 1 (BIPS 2) (µg/m³)

Notes: Contour levels 10, 20, 50 µg/m³. Cumulative criterion: 164 µg/m³.

FIGURE 5-3 PLANT OPTION F1: MAXIMUM 1-HOUR AVERAGE INCREMENTAL NO₂ PREDICTIONS – PLANT SCENARIO 1 (BIPS 2) (µg/m³)

Notes: Contour levels 10, 20, 50 μ g/m³. Cumulative criterion: 164 μ g/m³.

